Bioinspired metaheuristics for image segmentation
Osuna-Enciso, Valentín

Data: 2014
Resum: In general, the purpose of Global Optimization (GO) is finding the global optimum of an objective function defined inside a search space. The GO has applications in many areas of science, engineering, economics, among other, where mathematical models are utilized. Those algorithms are divided into two groups: deterministic, and evolutionary. Since deterministic methods only provide a theoretical guarantee of locating local minimums of the objective function, they face great difficulties in solving GO problems. On the other hand, evolutionary methods are faster in locating a global optimum than deterministic ones, because they operate over a population of candidate solutions, therefore they have a bigger likelihood of finding the global optimum, and a better adaptation to black box formulations or complicated function forms.
Nota: Advisors: Erik Cuevas, Humberto Sossa. Date and location of the PhD thesis defense: 2nd December 2013, Centro de Investigación en Computación - Instituto Politécnico Nacional.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: other ; abstract ; publishedVersion
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 13, Núm. 2 (2014) , p. 1-3, ISSN 1577-5097

Adreça original:
Adreça original:
DOI: 10.5565/rev/elcvia.567

Article & References
3 p, 119.4 KB

39 p, 3.3 MB

5 p, 231.9 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA

 Registre creat el 2014-06-12, darrera modificació el 2018-09-08

   Favorit i Compartir