Per citar aquest document:
Scopus: 2 cites,
Blind Restoration of Motion Blurred Barcode Images using Ridgelet Transform and Radial Basis Function Neural Network
Tiwari, Shamik (Mody University of Science & Technology (Índia). Faculty of Engineering & Technology)
Prasad Shukla, Vidhya (Mody University of Science & Technology (Índia). Faculty of Engineering & Technology)
Biradar, S. R. (SDM College of Engineering (Índia))
Singh, Ajay Kr. (Mody University of Science & Technology (Índia). Faculty of Engineering & Technology)

Data: 2014
Resum: The aim of any image restoration techniques is recovering the original image from a degraded observation. One of the most common degradation phenomena in images is motion blur. In case of blind image restoration accurate estimation of motion blur parameters is required for deblurring of such images. This paper proposed a novel technique for estimating the parameters of motion blur using ridgelet transform. Initially, the energy of ridgelet coefficients is used to estimate the blur angle and then blur length is estimated using a radial biases function neural network. This work is tested on different barcode images with varying parameters of blur. The simulation results show that the proposed method improves the restoration performance.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Image restoration ; Motion blur
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 13 Núm. 3 (2014) , p.63-80 (Regular Issue) , ISSN 1577-5097

Adreça alternativa:
Adreça original:
DOI: 10.5565/rev/elcvia.577

16 p, 2.0 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA
Articles > Articles de recerca

 Registre creat el 2014-12-03, darrera modificació el 2017-10-15

   Favorit i Compartir