Web of Science: 72 citations, Scopus: 77 citations, Google Scholar: citations
Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes
Bahn, Michael. (Universität Innsbruck. Institut für Ökologie)
Reichstein, M. (Max Planck Institute for Biogeochemistry)
Davidson, E. A. (Woods Hole Research Center (Woods Hole, Mass.))
Grünzweig, J. (Universitah ha-Ivrit bi-Yerushalayim. Robert H. Smith Faculty of Agriculture, Food and Environment)
Jung, M. (Max Planck Institute for Biogeochemistry)
Carbone, M. S. (University of California. Department of Geography)
Epron, D. (Université de Lorraine)
Misson, L. (Centre national de la recherche scientifique (França))
Nouvellon, Y. (Centre de coopération internationale en recherche agronomique pour le développment)
Roupsard, O. (Centre de coopération internationale en recherche agronomique pour le développment)
Savage, K. (Woods Hole Research Center (Woods Hole, Mass.))
Trumbore, S. E. (Max Planck Institute for Biogeochemistry)
Gimeno, C. (Centro de Estudios Ambientales del Mediterráneo)
Curiel Yuste, Jorge (Centre de Recerca Ecològica i Aplicacions Forestals)
Tang, J. (Marine Biological Laboratory (Woods Hole, Mass.). Ecosystems Center)
Vargas, R. (University of California, Berkeley. Department of Environmental Science, Policy & Management)
Janssens, I. A. (Universiteit Antwerpen. Departement Biologie)

Date: 2010
Abstract: Soil respiration (SR) constitutes the largest flux of CO₂ from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (〖SR〗_MAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q₁₀). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure 〖SR〗_MAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO₂ emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.
Note: Número d'acord de subvenció EC/FP7/208516
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: article ; recerca ; publishedVersion
Subject: Biomes ; Soil respiration ; Temperature ; Vegetation
Published in: Biogeosciences, Vol. 7 Issue 7 (July 2010) , p. 2147-2157, ISSN 1726-4189

DOI: 10.5194/bg-7-2147-2010
PMID: 23293656

11 p, 557.4 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Research articles
Articles > Published articles

 Record created 2015-04-16, last modified 2020-09-22

   Favorit i Compartir