Per citar aquest document:
Higher-order regularization and morphological techniques for image segmentation
Márquez Neila, Pablo

Data: 2015
Resum: Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pair-wise regularization which is insufficient in many cases. We study their difficulties to capture higher-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a non-parametric way using higher-order potentials.
Nota: Advisor: Luis Baumela. Date and location of PhD thesis defense: 4th April 2014, Technical University of Madrid
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: other ; abstract ; publishedVersion
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 14 Núm. 3 (2015) , p. 19-20 (Special Issue on Recent PhD Thesis Dissemination (2014)) , ISSN 1577-5097

Adreça alternativa:
Adreça original:
DOI: 10.5565/rev/elcvia.730

2 p, 25.5 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA

 Registre creat el 2015-12-24, darrera modificació el 2017-10-14

   Favorit i Compartir