Scopus: 0 cites,
Interpreting the Structure of Single Images by Learning from Examples
Haines, Osian

Data: 2015
Resum: An important problem in computer vision is the interpretation of the content of a single image. In our work we investigated the challenging case of recovering the underlying 3D structure of a scene from a single image, by learning from trainig data. Toward this, we developed a plane detection algorithm, which is able to find planar surfaces in a single still image and estimate their orientation with respect to the camera. This comprises two parts: a plane recognition stage, to classify individual regions as being planar or not, and to estimate their orienation; followed by a Markov-random field based segmentation stage to find distinct planes in the image. We also demonstrated an application of this to visual odometry, where single-image plane detection allows structure-rich maps to be built quickly. (Please note that this abstract does not appear in the submitted article itself, since that is itself an extended thesis abstract! But the above describes the main points of our work as described in our submission. ).
Nota: Advisor: Andrew Calway. PhD thesis defended 3rd October 2013, University of Bristol
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: other ; abstract ; publishedVersion
Matèria: Computer vision ; Scene understanding ; Robotics and visual navigation ; 3d and stereo ; Machine learning and data mining ; Colour and texture
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 14 Núm. 3 (2015) , p. 33-35 (Special Issue on Recent PhD Thesis Dissemination (2014)) , ISSN 1577-5097

Adreça original:
DOI: 10.5565/rev/elcvia.729

3 p, 1.7 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA

 Registre creat el 2015-12-24, darrera modificació el 2018-11-03

   Favorit i Compartir