visitant ::
identificació
|
|||||||||||||||
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español |
Pàgina inicial > Llibres i col·leccions > Capítols de llibres > Analysis and numerical approximation of viscosity solutions with shocks : |
Data: | 2011 |
Resum: | We consider a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion function that depends on the unknown and on the gradient of the unknown. The new class of Hamilton-Jacobi equations represents the propagation of fronts with speed that is a nonlinear function of the signal. The equations contain a nonstandard Hamiltonian that allows the presence of shocks in the solution and these shocks propagate with nonlinear velocity. We focus on the one-dimensional plasma equation as an example of the general Fokker-Planck equations having the features we are interested in analyzing. We explore features of the solution of the corresponding Hamilton-Jacobi plasma equation and propose a suitable fifth order finite difference numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We present numerical results performed under different initial data with compact support. |
Ajuts: | Ministerio de Ciencia e Innovación MTM2008-03597 |
Drets: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Llengua: | Anglès |
Document: | Capítol de llibre ; recerca ; Versió acceptada per publicar |
Matèria: | Fokker-Planck equation ; Hamilton-Jacobi equations ; Plasma equation ; Numerical schemes |
Publicat a: | Advances in Mathematical and Computational Methods: addressing modern challenges of science, technology, and society, 2011, p. 41-44 |
Postprint 4 p, 132.0 KB |