Existence of non-trivial limit cycles in Abel equations with symmetries
Álvarez Torres, María Jesús 
(Universitat de les Illes Balears. Departament de Ciències Matemàtiques i Informàtica)
Bravo, Jose Luis (Universidad de Extremadura. Departamento de Matemáticas)
Fernández, Manuel (Universidad de Extremadura. Departamento de Matemáticas)
| Date: |
2013 |
| Abstract: |
We study the periodic solutions of the generalized Abel equation x' = a1A1(t)xn1 +a2A2(t)xn2 +a3A3(t)xn3, where n1, n2, n3 >1 are distinct integers, a1, a2, a3 ∈ R, and A1, A2, A3 are 2π-periodic analytic functions such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive even functions. When (n3 −n1)(n3 −n2) < 0 we prove that the equation has no nontrivial (different from zero) limit cycle for any value of the parameters a1, a2, a3. When (n3 − n1)(n3 − n2) > 0 we obtain under additional conditions the existence of non-trivial limit cycles. In particular, we obtain limit cycles not detected by Abelian integrals. |
| Grants: |
Ministerio de Economía y Competitividad MTM2008-03437
|
| Note: |
Agraïments: J.L.B. and M.F. were partially supported by grant FEDER(UE) MTM2008-05460. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Periodic solutions ;
Abel equation |
| Published in: |
Nonlinear Analysis : Theory, Methods and Applications, Vol. 84 (2013) , p. 18-28, ISSN 0362-546X |
DOI: 10.1016/j.na.2013.02.001
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2016-05-06, last modified 2024-11-24