Integrability and non-integrability of periodic non-autonomous Lyness recurrences
Cimà, Anna 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Gasull, Armengol 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Mañosa Fernández, Víctor 1971-

(Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III)
| Date: |
2013 |
| Abstract: |
This paper studies non-autonomous Lyness type recurrences of the form xn+2 =(an +xn+1)/xn, where {an} is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k ∈ {1, 2, 3, 6} the behavior of the sequence {xn} is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some different features. |
| Grants: |
Ministerio de Ciencia y Tecnología MTM2008-03437
|
| Note: |
Agraïments: DPI2008-06699-C02-02 and DPI2011-25822 |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Integrability and non-integrability of discrete systems ;
Numerical chaos ;
Periodic difference equations ;
QRT maps ;
Rational and meromorphic first integrals |
| Published in: |
Dynamical Systems, Vol. 28 Núm. 4 (2013) , p. 518-538, ISSN 1468-9375 |
DOI: 10.1080/14689367.2013.821103
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2016-05-06, last modified 2024-11-24