Per citar aquest document:
Scopus: 3 cites, Web of Science: 2 cites,
Large-signal model of graphene field-effect transistors. Part I : compact modeling of GFET intrinsic capacitances
Pasadas, Francisco (Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica)
Jiménez Jiménez, David (Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica)

Data: 2016
Resum: We present a circuit-compatible compact model of the intrinsic capacitances of graphene field-effect transistors (GFETs). Together with a compact drain current model, a large-signal model of GFETs is developed combining both models as a tool for simulating the electrical behavior of graphene-based integrated circuits, dealing with the DC, transient behavior, and frequency response of the circuit. The drain current model is based in a drift-diffusion mechanism for the carrier transport coupled with an appropriate field-effect approach. The intrinsic capacitance model consists of a 16-capacitance matrix including self-capacitances and transcapacitances of a four-terminal GFET. To guarantee charge conservation, a Ward-Dutton linear charge partition scheme has been used. The large-signal model has been implemented in Verilog-A, being compatible with conventional circuit simulators and serving as a starting point toward the complete GFET device model that could incorporate additional non-idealities.
Nota: Número d'acord de subvenció EC/H2020/696656
Nota: Número d'acord de subvenció MINECO/TEC2012-31330
Nota: Número d'acord de subvenció MINECO/TEC2015-67462-C2-1-R
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; acceptedVersion
Matèria: Compact model ; Drift-diffusion ; Field-effect transistor ; Graphene ; Intrinsic capacitance ; Verilog-A
Publicat a: IEEE Transactions on Electron Devices, Vol. 63 Issue 7 (July 2016) , p. 2936 - 2941, ISSN 0018-9383

DOI: 10.1109/TED.2016.2570426

6 p, 1.8 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-05-26, darrera modificació el 2017-10-14

   Favorit i Compartir