Google Scholar: citations
Equigeneric and equisingular families of curves on surfaces
Dedieu, Thomas (Université Paul Sabatier (França). Institut de Mathématiques de Toulouse)
Sernesi, E. (Universitá Roma Tre. Dipartimento di Matematica e Fisica)

Date: 2017
Abstract: We investigate the following question: let C be an integral curve contained in a smooth complex algebraic surface X; is it possible to deform C in X into a nodal curve while preserving its geometric genus? We armatively answer it in most cases when X is a Del Pezzo or Hirzebruch surface (this is due to Arbarello and Cornalba, Zariski, and Harris), and in some cases when X is a K3 surface. Partial results are given for all surfaces with numerically trivial canonical class. We also give various examples for which the answer is negative.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Families of singular curves on algebraic surfaces ; Equigeneric and equisingular deformations ; Nodal curves
Published in: Publicacions matemàtiques, Vol. 61 Núm. 1 (2017) , p. 175-212 (Articles) , ISSN 2014-4350

Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/316083
DOI: 10.5565/PUBLMAT_61117_07


38 p, 552.6 KB

The record appears in these collections:
Articles > Published articles > Publicacions matemàtiques
Articles > Research articles

 Record created 2016-12-19, last modified 2024-11-23



   Favorit i Compartir