Web of Science: 1 citations, Scopus: 2 citations, Google Scholar: citations
When parallels and meridians are limit cycles for polynomial vector fields on quadrics of revolution in the euclidean 3-space
Dias, Fabio Scalco (Universidade Federal de Itajubá(Brazil). Instituto de Matemática e Computacâo)
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Mello, Luis Fernando (Universidade Federal de Itajubá(Brazil). Instituto de Matemática e Computacâo)

Date: 2016
Abstract: We study polynomial vector fields of arbitrary degree in R^3 with an invariant quadric of revolution. We characterize all the possible configurations of invariant meridians and parallels that these vector fields can exhibit. Furthermore we analyze when these invariant meridians and parallels can be limit cycles.
Note: Agraïments: The first and third authors are partially supported by CNPq grant 472321/2013-7 and by FAPEMIG grant APQ-00130-13. The third author is partially supported by CNPq grant 301758/2012-3 and by FAPEMIG grant PPM-00516-15. All authors are also supported by the joint project CAPES CSF-PVE grant 88881.030454/2013-0.
Note: Número d'acord de subvenció MINECO/MTM2013-40998-P
Note: Número d'acord de subvenció AGAUR/2014/SGR-568
Note: Número d'acord de subvenció EC/FP7/2012/316338
Note: Número d'acord de subvenció EC/FP7/2012/316339
Rights: Tots els drets reservats.
Language: Anglès
Document: article ; recerca ; acceptedVersion
Subject: Invariant meridian ; Invariant parallel ; Limit cycle ; Periodic orbit ; Polynomial vector field
Published in: International journal of bifurcation and chaos in applied sciences and engineering, Vol. 26 Núm. 9 (2016) , p. 1650160 (14 pages), ISSN 1793-6551

DOI: 10.1142/S0218127416501601


Postprint
18 p, 599.5 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2017-01-23, last modified 2020-11-01



   Favorit i Compartir