A branch and bound method for stochastic global optimization
Norkin, Vladimir I.
Pflug, Georg Ch.
Ruszczynski, Andrzej

Data: 1998
Resum: A stochastic branch and bound method for solving stochastic global optimization problems is proposed. As in the deterministic case, the feasible set is partitioned into compact subsets. To guide the partitioning process the method uses stochastic upper and lower estimates of the optimal value of the objective function in each subset. Convergence of the method is proved and random accuracy estimates derived. Methods for constructing stochastic upper and lower bounds are discussed. The theoretical considerations are illustrated with an example of a facility location problem. .
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Stochastic programming ; Global optimization ; Branch and bound method ; Facility location
Publicat a: Mathematical Programming, vol. 83 n. 3 (1998) p. 425-450, ISSN 0025-5610

26 p, 871.8 KB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2006-03-13, darrera modificació el 2023-06-03

   Favorit i Compartir