Local positivity in terms of Newton-Okounkov bodies
Roé Vellvé, Joaquim 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
| Date: |
2016 |
| Abstract: |
In recent years, the study of Newton-Okounkov bodies on normal varieties has become a central subject in the asymptotic theory of linear series, after its introduction by Lazarsfeld-Mustata and Kaveh-Khovanskii. One reason for this is that they encode all numerical equivalence information of divisor classes (by work of Jow). At the same time, they can be seen as local positivity invariants, and Küronya-Lozovanu have studied them in depth from this point of view. We determine what information is encoded by the set of all Newton-Okounkov bodies of a big divisor with respect to flags centered at a fixed point of a surface, by showing that it determines and is determined by the numerical equivalence class of the divisor up to negative components in the Zariski decomposition that do not go through the fixed point. |
| Note: |
Agraïments: The author greatly benefited from conversations with A. Küronya on the contents of this work. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Newton-Okounkov body ;
Linear system ;
Big divisor ;
Positivity ;
Local positivity ;
Algebraic geometry ;
Algebraic surface |
| Published in: |
Advances in mathematics, Vol. 301 (2016) , p. 486-498, ISSN 1090-2082 |
DOI: 10.1016/j.aim.2016.05.028
Post-print
11 p, 138.4 KB
|
The record appears in these collections:
Articles >
Research articlesArticles >
Published articles
Record created 2017-06-12, last modified 2024-11-23