Google Scholar: citations
A convex representation of totally balanced games
Bilbao, Jesús Mario (Universidad de Sevilla)
Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica)

Date: 2012
Abstract: We analyze the least increment function, a convex function of n variables associated to an n-person cooperative game. Another convex representation of cooperative games, the indirect function, has previously been studied. At every point the least increment function is greater than or equal to the indirect function, and both functions coincide in the case of convex games, but an example shows that they do not necessarily coincide if the game is totally balanced but not convex. We prove that the least increment function of a game contains all the information of the game if and only if the game is totally balanced. We also give necessary and sufficient conditions for a function to be the least increment function of a game as well as an expression for the core of a game in terms of its least increment function.
Grants: Ministerio de Ciencia e Innovación MTM2008-06695-C03-0
Ministerio de Ciencia e Innovación ECO2010-17766
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Cooperative games ; Indirect function ; Least increment function
Published in: Journal of mathematical analysis and applications, Volume 387, Issue 2, (2012) , p. 1167-1175, ISSN 1096-0813

DOI: 10.1016/j.jmaa.2011.10.026


Preprint
12 p, 209.1 KB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2017-11-27, last modified 2024-11-23



   Favorit i Compartir