Web of Science: 43 citations, Scopus: 45 citations, Google Scholar: citations
A dp53-Dependent Mechanism Involved in Coordinating Tissue Growth in Drosophila
Mesquita, Duarte (Institut d'Investigació Biomèdica Sant Pau)
Dekanty, Andrés (Institut d'Investigació Biomèdica Sant Pau)
Milán, Marco (Institució Catalana de Recerca i Estudis Avançats)
Universitat Autònoma de Barcelona

Date: 2010
Abstract: A study in the Drosophila wing suggests a crucial role of p53 in the coordination of growth between adjacent cell populations to maintain organ proportions and shape. Coordination of growth between and within organs contributes to the generation of well-proportioned organs and functionally integrated adults. The mechanisms that help to coordinate the growth between different organs start to be unravelled. However, whether an organ is able to respond in a coordinated manner to local variations in growth caused by developmental or environmental stress and the nature of the underlying molecular mechanisms that contribute to generating well-proportioned adult organs under these circumstances remain largely unknown. By reducing the growth rates of defined territories in the developing wing primordium of Drosophila, we present evidence that the tissue responds as a whole and the adjacent cell populations decrease their growth and proliferation rates. This non-autonomous response occurs independently of where growth is affected, and it is functional all throughout development and contributes to generate well-proportioned adult structures. Strikingly, we underscore a central role of Drosophila p53 (dp53) and the apoptotic machinery in these processes. While activation of dp53 in the growth-depleted territory mediates the non-autonomous regulation of growth and proliferation rates, effector caspases have a unique role, downstream of dp53, in reducing proliferation rates in adjacent cell populations. These new findings indicate the existence of a stress response mechanism involved in the coordination of tissue growth between adjacent cell populations and that tissue size and cell cycle proliferation can be uncoupled and are independently and non-autonomously regulated by dp53. The coordination of growth within and between organs contributes to the generation of functionally integrated structures and well-proportioned animals and plants. Though these issues have fascinated biologists for centuries, the responsible molecular mechanisms remain largely uncharacterized. In this work, we have used the Drosophila wing primordium to show that adjacent cell populations grow and proliferate in a coordinated manner. By reducing growth rates in specific territories within the developing wing, we showed that the tissue responds as a whole and that in adjacent cell populations the growth and cell cycle rates are concomitantly reduced, thus maintaining tissue proportions and normal wing shape. Interestingly, we show that the Drosophila tumour suppressor protein dp53 and apoptotic machinery play a key role in coordinating this tissue-wide response. Both growth and proliferation rates are regulated in a coordinated and non-autonomous manner by the activity of dp53, whilst the apoptotic pathway has a specific and non-autonomous role in regulating cell proliferation rates. Our studies describe a novel mechanism for regulating tissue growth in developing organs that may ultimately be relevant for other processes involving coordination of growth, such as tissue renewal, regeneration, and cancer.
Grants: Ministerio de Ciencia e Innovación BFU2007-64127-BMC
Agència de Gestió d'Ajuts Universitaris i de Recerca 2005/SGR-00118
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: PLoS biology, Vol. 8 (12 2010) , ISSN 1545-7885

DOI: 10.1371/journal.pbio.1000566
PMID: 21179433


12 p, 1.8 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Health sciences and biosciences > Institut de Recerca Sant Pau
Articles > Research articles
Articles > Published articles

 Record created 2017-12-20, last modified 2023-11-29



   Favorit i Compartir