|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > An additive subfamily of enlargements of a maximally monotone operator |
| Data: | 2015 |
| Resum: | We introduce a subfamily of additive enlargements of a maximally monotone operator. Our definition is inspired by the early work of Simon Fitzpatrick. These enlargements constitute a subfamily of the family of enlargements introduced by Svaiter. When the operator under consideration is the subdifferential of a convex lower semicontinuous proper function, we prove that some members of the subfamily are smaller than the classical ε-subdifferential enlargement widely used in convex analysis. We also recover the ε-subdifferential within the subfamily. Since they are all additive, the enlargements in our subfamily can be seen as structurally closer to the ε-subdifferential enlargement. |
| Ajuts: | Ministerio de Economía y Competitividad MTM2011-29064-C03 |
| Nota: | Dedicated to professor L. Thibault |
| Nota: | Altres ajuts: Australian Research Council DP140103213 i DP110102011 |
| Drets: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Llengua: | Anglès |
| Document: | Article ; recerca ; Versió sotmesa a revisió |
| Matèria: | Maximally monotone operator ; ε-subdifferential mapping ; Subdifferential operator ; Convex lower semicontinuous function ; Fitzpatrick function ; Enlargement of an operator ; Brøndsted- Rockafellar enlargements ; Additive enlargements ; Brøndsted- Rockafellar property ; Fenchel-Young function |
| Publicat a: | Set-Valued and Variational Analysis, Vol. 23, Núm. 4 (December 2015) , p. 643-665 2015, ISSN 1877-0541 |
Preprint 24 p, 473.9 KB |