Google Scholar: cites
Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin
Renugopalakrishnan, Venkatesan (Northeastern University. Department of Chemistry and Chemical Biology)
Barbiellini, Bernardo (Northeastern University. Department of Chemistry and Chemical Biology)
King, Chris (Northeastern University. Department of Mathematics)
Molinari, Michael (Université de Reims Champagne-Ardenne. Laboratoire de Recherche en Nanosciences)
Mochalov, Konstantin (Moscow Engineering Physics Institute)
Sukhanova, Alyona (Université de Reims Champagne-Ardenne. Laboratoire de Recherche en Nanosciences)
Nabiev, Igor (Université de Reims Champagne-Ardenne. Laboratoire de Recherche en Nanosciences)
Fojan, Peter (Aalborg Universitet. Department of Physics and Nanotechnology)
Tuller, Harry L. (Massachusetts Institute of Technology. Department of Materials Science and Engineering)
Chin, Michael (Columbia University. Langmuir Center for Colloids and Interfaces)
Somasundaran, Ponisseril (Columbia University. Langmuir Center for Colloids and Interfaces)
Padrós, Esteve (Universitat Autònoma de Barcelona. Departament de Bioquímica i de Biologia Molecular)
Ramakrishna, Seeram (National University of Singapore. Nanoscience and Nanotechnology Initiative)

Data: 2014
Resum: We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) use of the Forster resonance energy transfer coupling between bR and QDs to achieve an efficient absorbing layer for dye-sensitized solar cells. This proposed approach is based on the unique optical characteristics of QDs, on the photovoltaic properties of bR, and on state-of-the-art nanobioengineering technologies. It permits spatial and optical coupling together with control of hybrid material components on the bionanoscale. This method paves the way to the development of the solid-state photovoltaic device with the efficiency increased to practical levels.
Ajuts: European Commission 246479
Ministerio de Ciencia e Innovación BFU2012-40137-C02-01
Nota: Article publicat sota la llicència AuthorChoice de l'American Chemical Society: https://pubs.acs.org/userimages/ContentEditor/1404932937291/authorchoice_form.pdf
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Journal of physical chemistry. C, Vol. 118, issue 30 (Jul. 2014) , p. 16710-16717, ISSN 1932-7455

DOI: 10.1021/jp502885s
PMID: 25383133


8 p, 4.3 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2018-01-29, darrera modificació el 2022-09-03



   Favorit i Compartir