Web of Science: 62 cites, Scopus: 60 cites, Google Scholar: cites,
A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics
Urbain, Félix (Institut de Recerca en Energia de Catalunya)
Tang, PengYi (Institut Català de Nanociència i Nanotecnologia)
Carretero González, Nina Magali (Institut de Recerca en Energia de Catalunya)
Andreu, Teresa (Institut de Recerca en Energia de Catalunya)
Gerling, Luis G. (Universitat Politècnica de Catalunya)
Voz Sánchez, Cristóbal (Universitat Politècnica de Catalunya)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Morante, Joan Ramon (Institut de Recerca en Energia de Catalunya)

Data: 2017
Resum: The conversion of carbon dioxide (CO) into value-added chemicals and fuels, preferably using renewable energy and earth-abundant materials, is considered a key priority for future energy research. In this work, a bias-free reactor device for the solar-driven conversion of CO to synthesis gas (syngas) has been developed. The integrated fluidic device consists of a cathode made of copper foam coated with low-cost nanosized zinc flakes as catalyst to perform the CO reduction reaction (CORR) to syngas, an adapted silicon heterojunction solar cell structure as photoanode with nickel foam as catalyst to facilitate the oxygen evolution reaction (OER), and a bipolar membrane separating the respective catholyte and anolyte compartments. The membrane allows for the operation of the catholyte and anolyte at different pH values. Stable and tunable hydrogen-to-carbon monoxide (H:CO) ratios between 5 and 0. 5 along with high CO Faradaic efficiencies of up to 85% and CO current densities of 39. 4 mA cm have been demonstrated. Under photoelectrolysis conditions, the photovoltage of the photoanode was varied between 0. 6 V and 2. 4 V by connecting up to four heterojunction solar cells in series, and thus reducing the overall cell voltage solely by solar energy utilization. Bias-free operation of the integrated device has been achieved under ambient conditions with active areas for CORR and OER, respectively, of 10 cm. An operation current density of 5. 0 mA cm was measured under 100 mW cm illumination of the complete device, which corresponds to a solar-to-syngas conversion efficiency of 4. 3%.
Ajuts: Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1638
Ministerio de Economía y Competitividad SEV-2013-0295
Ministerio de Ciencia e Innovación ENE2013-48629-C4-1-R
Ministerio de Economía y Competitividad MAT2014-59961-C2-2-R
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Earth-abundant materials ; Faradaic efficiencies ; Heterojunction solar cells ; Oxygen evolution reaction ; Renewable energies ; Silicon heterojunctions ; Synthesis gasses (syngas) ; Value-added chemicals
Publicat a: Energy & environmental science, Vol. 10, Núm. 10 (October 2017) , p. 2256-2266, ISSN 1754-5706

DOI: 10.1039/c7ee01747b

19 p, 2.0 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2018-07-19, darrera modificació el 2021-09-25

   Favorit i Compartir