|
|
|||||||||||||||
|
Buscar | Enviar | Ayuda | Servicio de Bibliotecas | Sobre el DDD | Català English Español | |||||||||
| Página principal > Artículos > Artículos publicados > Limit cycles of a second-order differential equation |
| Fecha: | 2019 |
| Resumen: | We provide an upper for the maximum number of limit cycles bifurcating from the periodic solutions of x=0, when we perturb this system as follows \ (1 ^m )Q(x,y) x=0, \] where >0 is a small parameter, m is an arbitrary non-negative integer, Q(x,y) is a polynomial of degree n and =(y/x). The main tool used for proving our results is the averaging theory. |
| Ayudas: | European Commission 778078 Ministerio de Economía y Competitividad MTM2016-77278-P Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617 |
| Derechos: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Lengua: | Anglès |
| Documento: | Article ; recerca ; Versió acceptada per publicar |
| Materia: | Averaging theory ; Limit cycle ; Mathieu-Duffing type |
| Publicado en: | Applied mathematics letters, Vol. 88 (2019) , p. 111-117, ISSN 0893-9659 |
Postprint 7 p, 289.4 KB |