Web of Science: 59 cites, Scopus: 62 cites, Google Scholar: cites,
SnP nanocrystals as anode materials for Na-ion batteries
Liu, Junfeng (Institut de Recerca en Energia de Catalunya)
Wang, Shutao (EMPA-Swiss Federal Laboratories for Materials Science and Technology)
Kravchyk, Kostiantyn (EMPA-Swiss Federal Laboratories for Materials Science and Technology)
Ibáñez, Maria (EMPA-Swiss Federal Laboratories for Materials Science and Technology)
Krumeich, Frank (ETH Zürich. Department of Chemistry and Applied Biosciences)
Widmer, Roland (EMPA-Swiss Federal Laboratories for Materials Science and Technology)
Nasiou, Déspina (Institut Català de Nanociència i Nanotecnologia)
Meyns, Michaela (Institut de Recerca en Energia de Catalunya)
Llorca, Jordi (Universitat Politècnica de Catalunya. Departament d'Enginyeria Química)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Kovalenko, Maksym V. (ETH Zürich. Department of Chemistry and Applied Biosciences)
Cabot, Andreu (Institut de Recerca en Energia de Catalunya)

Data: 2018
Resum: Tin monophosphide is a layered material consisting of Sn-P-P-Sn sandwiches that are stacked on top of each other to form a three dimensional crystallographic structure. Its composition and crystal structure makes it an excellent candidate anode material for sodium-ion batteries (SIBs). However, SnP is yet to be explored for such and other applications due to its challenging synthesis. In the present work, we report the synthesis of SnP nanocrystals (NCs) from the reaction of hexamethylphosphorous triamide (HMPT) and a tin phosphonate prepared from tin oxalate and a long chain phosphonic acid. SnP NCs obtained from this reaction displayed a spherical geometry and a trigonal crystallographic phase with a superstructure attributed to ordered diphosphorus pairs. Such NCs were mixed with carbon black and used as anode materials in SIBs. SIBs based on SnP NCs and sodium(i) bis(fluorosulfonyl)imide (NaFSI) electrolyte displayed a high reversible capacity of 600 mA h g at a current density of 100 mA g and cycling stability for over 200 cycles. Their excellent cycling performance is associated with both the small size of the crystal domains and the particular composition and phase of SnP which prevent mechanical disintegration and major phase separation during sodiation and desodiation cycles. These results demonstrate SnP to be an attractive anode material for sodium ion batteries.
Ajuts: Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1638
Ministerio de Economía y Competitividad ENE2017-85087-C3-3-R
Ministerio de Economía y Competitividad SEV-2013-0295
Ministerio de Economía y Competitividad ENE2015-63969-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-128
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Bis(fluorosulfonyl)imide ; Crystallographic phase ; Crystallographic structure ; Cycling performance ; Cycling stability ; High reversible capacities ; Nanocrystal (NCs) ; Spherical geometries
Publicat a: Journal of materials chemistry, Vol. 6, Issue 23 (June 2018) , p. 10958-10966, ISSN 2050-7496

DOI: 10.1039/c8ta01492b


Postprint
12 p, 1.7 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2019-12-20, darrera modificació el 2022-09-10



   Favorit i Compartir