Web of Science: 1 cites, Scopus: 1 cites, Google Scholar: cites,
Spatial and spectral pattern identification for the automatic selection of high-quality MODIS images
Pesquer Mayos, Lluís (Centre de Recerca Ecològica i Aplicacions Forestals)
Domingo Marimon, Cristina (Centre de Recerca Ecològica i Aplicacions Forestals)
Pons, Xavier (Universitat Autònoma de Barcelona. Departament de Geografia)

Data: 2019
Resum: Remote sensing is providing an increasing number of crucial data about Earth. Systematic revisitation time allows the analysis of long time series as well as imagery utilization in the most interesting moments. Nevertheless, the current huge amount of data makes essential the usage of automatic methods to select the best captures, as many of them are not useful because of clouds, shadows, etc. Because of that, one of the characteristics of the more recent missions is the distribution, along with the spectral data, of a large amount of quality ancillary datasets. These datasets can act synergistically in the aim of selecting the best quality images, but the criteria they provide are not always enough. Indeed, these datasets are often used on a per pixel basis and the spatial pattern of the different spectral bands is forgotten, so ignoring the key information they can provide for our goals. With this aim, our work takes one of the most successful instruments in remote sensing, MODIS, and demonstrates, through geostatistical techniques, that the role of the spatial patterns of the spectral bands can effectively improve image selection in a complex (for climate, relief, and vegetation and crop phenology) region of 63,700  km2. The results show that band 01 (red) is the preferred one, as it achieves a 13% higher success than when only using quality bands criteria: a 94% global accuracy (66 true classifications, and only four omissions and one commission error). A second, important finding, is that the geostatistical selection improves results when using any band, except for band 02 (NIR1), which makes our proposal potentially useful for most remote sensing missions. Finally, the method can be executed in a reasonable computing time due to previously developed high-performance computing techniques.
Nota: Número d'acord de subvenció EC/H2020/641762
Nota: Número d'acord de subvenció MINECO/CGL2015-69888-P
Nota: Número d'acord de subvenció AGAUR/2017/SGR-1690
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Spatial and spectral pattern ; Quality bands ; MODIS surface reflectance ; Automatic variogram ; Time series
Publicat a: Journal of applied remote sensing, Vol. 13, issue 1 (2019) , art 014510, ISSN 1931-3195

DOI: 10.1117/1.JRS.13.014510

14 p, 3.3 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Grup de Recerca Mètodes i Aplicacions en Teledetecció i Sistemes d'Informació Geogràfica (GRUMETS)
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-01-21, darrera modificació el 2020-08-02

   Favorit i Compartir