Google Scholar: cites
Photoflexoelectric effect in halide perovskites
Shu, Longlong (Nanchang University. School of Materials Science and Engineering)
Ke, Shanming (Nanchang University. School of Materials Science and Engineering)
Fei, Linfeng (Nanchang University. School of Materials Science and Engineering)
Huang, Wenbin (Chongqing University)
Wang, Zhiguo (Chongqing University)
Gong, Jinhui (Nanchang University. School of Materials Science and Engineering)
Jiang, Xiaoning (North Carolina State University. Department of Mechanical and Aerospace Engineering)
Wang, Li (Nanchang University. School of Materials Science and Engineering)
Li, Fei (Xi'an Jiao Tong University)
Lei, Shuijin (Nanchang University. School of Materials Science and Engineering)
Rao, Zhenggang (Nanchang University. School of Materials Science and Engineering)
Zhou, Yangbo (Nanchang University. School of Materials Science and Engineering)
Zheng, Ren-Kui (Nanchang University. School of Materials Science and Engineering)
Yao, Xi (Xi'an Jiao Tong University)
Wang, Yu (Nanchang University. School of Materials Science and Engineering)
Stengel, Massimiliano (Institut de Ciència de Materials de Barcelona)
Catalan, Gustau (Institut Català de Nanociència i Nanotecnologia)

Data: 2020
Resum: Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
Nota: Número d'acord de subvenció AGAUR/2017/SGR-579
Nota: Número d'acord de subvenció AGAUR/2017/SGR-1506
Nota: Número d'acord de subvenció EC/H2020/724529
Nota: Número d'acord de subvenció MINECO/SEV-2015-0496
Nota: Número d'acord de subvenció MINECO/SEV-2017-0706
Nota: Número d'acord de subvenció MINECO/MAT2016-77100-C2-1-P
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: article ; recerca ; submittedVersion
Matèria: Electromechanical transduction ; Environmental energy ; Flexoelectricity ; Generate electricity ; Halide perovskites ; Orders of magnitude ; Photovoltaic conversion ; Photovoltaic materials
Publicat a: Nature materials, Vol. 19, Issue 6 (June 2020) , p. 605-609, ISSN 1476-4660

DOI: 10.1038/s41563-020-0659-y


Preprint
15 p, 1.3 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-06-03, darrera modificació el 2020-06-13



   Favorit i Compartir