Web of Science: 1 cites, Scopus: 1 cites, Google Scholar: cites,
On farthest Voronoi cells
Goberna. Miguel Ángel (Universidad de Alicante)
Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona)
Todorov, Maxim (Universidad de las Américas Puebla)

Data: 2019
Resum: Given an arbitrary set T in the Euclidean space Rn, whose elements are called sites, and a particular site s, the farthest Voronoi cell of s, denoted by FT(s), consists of all points which are farther from s than from any other site. In this paper we study farthest Voronoi cells and diagrams corresponding to arbitrary (possibly infinite) sets. More in particular, we characterize, for a given arbitrary set T, those s∈T such that FT(s) is nonempty and study the geometrical properties of FT(s) in that case. We also characterize those sets T whose farthest Voronoi diagrams are tesselations of the Euclidean space, and those sets that can be written as FT(s) for some T⊂Rn and some s∈T.
Nota: Número d'acord de subvenció MICINN/FEDER/PGC2018-097960-B-C22
Nota: Número d'acord de subvenció MICINN/FEDER/PGC2018-097960-B-C21
Nota: Número d'acord de subvenció SEV-2015-0563
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; acceptedVersion
Matèria: Farthest Voronoi cells ; Linear inequality systems ; Boundedly exposed points
Publicat a: Linear Algebra and its Applications, Vol. 583 (December 2019) , p. 306-322, ISSN 0024-3795

Adreça alternativa: https://www.sciencedirect.com/science/article/abs/pii/S0024379519303787
DOI: 10.1016/j.laa.2019.09.002

Disponible a partir de: 2021-09-05

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-06-05, darrera modificació el 2020-10-31

   Favorit i Compartir