Google Scholar: cites
Photoresponse of Graphene-Gated Graphene-GaSe Heterojunction Devices
Kim, Wonjae (VTT Technical Research Center of Finland Ltd)
Arpiainen, Sanna (VTT Technical Research Center of Finland Ltd)
Xue, Hui (Aalto University (Aalto, Finlàndia))
Soikkeli, Miika (VTT Technical Research Center of Finland Ltd)
Qi, Mei (Aalto University (Aalto, Finlàndia))
Sun, Zhipei (Aalto University (Aalto, Finlàndia))
Lipsanen, Harri (Aalto University (Aalto, Finlàndia))
Chaves Romero, Ferney Alveiro (Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica)
Jiménez Jiménez, David (Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica)
Prunnila, Mika (Aalto University (Aalto, Finlàndia))

Data: 2018
Resum: Because of their extraordinary physical properties, low-dimensional materials including graphene and gallium selenide (GaSe) are promising for future electronic and optoelectronic applications, particularly in transparent-flexible photodetectors. Currently, the photodetectors working at the near-infrared spectral range are highly indispensable in optical communications. However, the current photodetector architectures are typically complex, and it is normally difficult to control the architecture parameters. Here, we report graphene-GaSe heterojunction-based field-effect transistors with broadband photodetection from 730-1550 nm. Chemical-vapor-deposited graphene was employed as transparent gate and contact electrodes with tunable resistance, which enables effective photocurrent generation in the heterojunctions. The photoresponsivity was shown from 10 to 0. 05 mA/W in the near-infrared region under the gate control. To understand behavior of the transistor, we analyzed the results via simulation performed using a model for the gate-tunable graphene-semiconductor heterojunction where possible Fermi level pinning effect is considered.
Ajuts: European Commission 785219
Ministerio de Economía y Competitividad TEC2015-67462-C2-1-R
Nota: Altres ajuts: This project has received funding from the European Union's Horinon 2020 research and innovation programme. This work was also partially funded by the Ministerio de Economía y Competitividad. The authors also acknowledge the funding from the Academy of Finland (Grants 276376, 284548, 295777, 304666, 312294, 312297, 312551, and 314810), TEKES-the Finnish Funding Agency for Technology and Innovation. The authors also thank Dr. Stephan Suckow in AMO GmbH for fruitful discussions about photonic device behavior.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Graphene ; GaSe ; Heterojunction ; Schottky ; Photodetector
Publicat a: ACS applied nano materials, Vol. 1 (07 2018) , p. 3895-3902, ISSN 2574-0970

DOI: 10.1021/acsanm.8b00684
PMID: 30259010


8 p, 2.1 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-07-13, darrera modificació el 2024-11-25



   Favorit i Compartir