Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
Khenkin, Mark V. 
(Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)
Katz, Eugene A. 
(Ilse Katz Institute for Nanoscale Science and Technology)
Abate, Antonio 
(Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)
Bardizza, Giorgio (European Commission. Joint Research Centre)
Berry, Joseph J. 
(National Renewable Energy Laboratory)
Brabec, Christoph (Helmholtz Institute Erlangen-Nürnberg (HI-ErN). Forschungszentrum Jülich (FZJ))
Brunetti, Francesca (CHOSE (Centre for Hybrid and Organic Solar Energy). Department of Electronic Engineering. University of Rome Tor Vergata)
Bulović, Vladimir (Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science)
Burlingame, Quinn (Princeton University. Andlinger Center for Energy & The Environment)
Di Carlo, Aldo
(CHOSE (Centre for Hybrid and Organic Solar Energy). Department of Electronic Engineering. University of Rome Tor Vergata)
Cheacharoen, Rongrong (Chulalongkorn University. Metallurgy and Materials Science Research Institute)
Cheng, Yi-Bing (Wuhan University of Technology. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing)
Colsmann, Alexander
(Karlsruhe Institute of Technology. Light Technology Institute)
Cros, Stephane (University of Grenoble Alpes. CEA. LITEN. INES)
Domanski, Konrad
(Fluxim AG)
Dusza, Michal (Saule Technologies. Wroclaw Technology Park)
Fell, Christopher J.
(CSIRO Energy)
Forrest, Stephen R. (University of Michigan. Department of Materials Science and Engineering)
Galagan, Yulia
(TNO - Solliance. High Tech Campus)
Di Girolamo, Diego (University of Rome La Sapienza. Department of Chemistry)
Grätzel, Michael
(École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Hagfeldt, Anders
(Laboratory of Photomolecular Science. Institute of Chemical Sciences and Engineering. École Polytechnique Fédérale de Lausanne)
Von Hauff, Elizabeth (Vrije Universiteit Amsterdam)
Hoppe, Harald (Center for Energy and Environmental Chemistry Jena (CEEC Jena). Friedrich Schiller University Jena)
Kettle, Jeff (School of Electronic Engineering. Bangor University. Bangor)
Köbler, Hans
(Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)
Leite, Marina S. (Department of Materials Science and Engineering. University of California)
Liu, Shengzhong (Frank) (Shaanxi Normal University. School of Materials Science and Engineering)
Loo, Yueh-Lin
(Princeton University. Department of Chemical and Biological Engineering)
Luther, Joseph M.
(National Renewable Energy Laboratory)
Ma, ChanQi
(Printable Electronics Research Center. Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences (CAS))
Madsen, Morten
(SDU NanoSYD. Mads Clausen Institute. University of Southern Denmark)
Manceau, Matthieu (University of Grenoble Alpes. CEA. LITEN. INES)
Matheron, Muriel
(University of Grenoble Alpes. CEA. LITEN. INES)
McGehee, Michael
(University of Colorado Boulder)
Meitzner, Rico (Center for Energy and Environmental Chemistry Jena (CEEC Jena). Friedrich Schiller University Jena)
Nazeeruddin, Mohammad Khaja
(École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Nogueira, Ana Flavia
(Laboratório de Nanotecnologia e Energia Solar. Chemistry Institute. University of Campinas - UNICAMP)
Odabaşı, Çağla
(Department of Chemical Engineering. Boğaziçi University. Bebek)
Osherov, Anna (Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology)
Park, Nam-Gyu
(School of Chemical Engineering. Sungkyunkwan University (SKKU))
Reese, Matthew O. (National Renewable Energy Laboratory)
De Rossi, Francesca
(SPECIFIC. College of Engineering. Swansea University. Bay Campus)
Saliba, Michael
(IEK-5 Photovoltaik. Forschungszentrum Jülich GmbH)
Schubert, Ulrich S. (Laboratory of Organic and Macromolecular Chemistry (IOMC). Friedrich Schiller University Jena)
Snaith, Henry J.
(Clarendon Laboratory. University of Oxford)
Stranks, Samuel D.
(Cavendish Laboratory. University of Cambridge)
Tress, Wofgang
(Laboratory of Photomolecular Science. Institute of Chemical Sciences and Engineering. École Polytechnique Fédérale de Lausanne)
Troshin, Pavel A. (IPCP RAS)
Turkovic, Vida (SDU NanoSYD. Mads Clausen Institute. University of Southern Denmark)
Veenstra, Sjoerd
(TNO - Solliance. High Tech Campus)
Visoly-Fisher, Iris
(Ilse Katz Institute for Nanoscale Science and Technology. Ben-Gurion University of the Negev)
Walsh, Aron (Department of Materials Science and Engineering. Yonsei University)
Watson, Trystan M.
(SPECIFIC. College of Engineering. Swansea University. Bay Campus)
Xie, Haibing
(Institut Català de Nanociència i Nanotecnologia)
Yıldırım, Ramazan
(Department of Chemical Engineering. Boğaziçi University. Bebek)
Zakeeruddin, Shaik Mohammed
(École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Zhu, Kai
(National Renewable Energy Laboratory)
Lira-Cantu, Monica
(Institut Català de Nanociència i Nanotecnologia)
| Date: |
2020 |
| Abstract: |
Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis. |
| Grants: |
European Commission 785219 European Commission 764047 European Commission 763989 European Commission 756962 Agencia Estatal de Investigación ENE2016-79282-C5-2-R Ministerio de Economía y Competitividad CTQ2016-81911-REDT Ministerio de Economía y Competitividad SEV-2017-0706 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-329
|
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Degradation mechanism ;
Experimental procedure ;
Induced degradation ;
Ion redistribution ;
Long term stability ;
Organic photovoltaics ;
Qualification standards ;
Stability assessment |
| Published in: |
Nature energy, Vol. 5 (2020) , p. 35-49, ISSN 2058-7546 |
DOI: 10.1038/s41560-019-0529-5
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
Catalan Institute of Nanoscience and Nanotechnology (ICN2)Articles >
Research articlesArticles >
Published articles
Record created 2020-11-18, last modified 2025-12-26