Web of Science: 877 cites, Scopus: 904 cites, Google Scholar: cites,
Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
Khenkin, M. V. (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)
Katz, Eugene A. (Ilse Katz Institute for Nanoscale Science and Technology)
Abate, Antonio (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)
Bardizza, Giorgio (European Commission. Joint Research Centre)
Berry, Joseph J. (National Renewable Energy Laboratory)
Brabec, C. (Helmholtz Institute Erlangen-Nürnberg (HI-ErN). Forschungszentrum Jülich (FZJ))
Brunetti, F. (CHOSE (Centre for Hybrid and Organic Solar Energy). Department of Electronic Engineering. University of Rome Tor Vergata)
Bulović, V. (Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology)
Burlingame, Q. (Andlinger Center for Energy & The Environment. Princeton University)
Di Carlo, Aldo (CHOSE (Centre for Hybrid and Organic Solar Energy). Department of Electronic Engineering. University of Rome Tor Vergata)
Cheacharoen, R. (Metallurgy and Materials Science Research Institute. Chulalongkorn University)
Cheng, Y. B. (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. Wuhan University of Technology)
Colsmann, A. (Light Technology Institute. Karlsruhe Institute of Technology (KIT))
Cros, S. (University of Grenoble Alpes. CEA. LITEN. INES)
Domanski, K. (Fluxim AG)
Dusza, Michal (Saule Technologies. Wroclaw Technology Park)
Fell, Christopher J (CSIRO Energy)
Forrest, S. R. (Department of Materials Science and Engineering. University of Michigan)
Galagan, Yulia (TNO - Solliance. High Tech Campus)
Di Girolamo, D. (Department of Chemistry. University of Rome La Sapienza)
Grätzel, Michael (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Hagfeldt, Anders. (Laboratory of Photomolecular Science. Institute of Chemical Sciences and Engineering. École Polytechnique Fédérale de Lausanne)
Von Hauff, Elizabeth (Vrije Universiteit Amsterdam)
Hoppe, Harald (Center for Energy and Environmental Chemistry Jena (CEEC Jena). Friedrich Schiller University Jena)
Kettle, J. (School of Electronic Engineering. Bangor University. Bangor)
Köbler, H. (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)
Leite, M. S. (Department of Materials Science and Engineering. University of California)
Liu, S. (. (Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering. Shaanxi Normal University)
Loo, Y. L. (Department of Chemical and Biological Engineering. Princeton University)
Luther, J. M. (National Renewable Energy Laboratory)
Ma, ChanQi (Printable Electronics Research Center. Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences (CAS))
Madsen, Morten. (SDU NanoSYD. Mads Clausen Institute. University of Southern Denmark)
Manceau, Matthieu (University of Grenoble Alpes. CEA. LITEN. INES)
Matheron, M. (University of Grenoble Alpes. CEA. LITEN. INES)
McGehee, M. (University of Colorado Boulder)
Meitzner, Rico (Center for Energy and Environmental Chemistry Jena (CEEC Jena). Friedrich Schiller University Jena)
Nazeeruddin, M. K. (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Nogueira, A. F. (Laboratório de Nanotecnologia e Energia Solar. Chemistry Institute. University of Campinas - UNICAMP)
Odabaşı, Ç. (Department of Chemical Engineering. Boğaziçi University. Bebek)
Osherov, A. (Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology)
Park, N. G. (School of Chemical Engineering. Sungkyunkwan University (SKKU))
Reese, M. O. (National Renewable Energy Laboratory)
De Rossi, Francesca (SPECIFIC. College of Engineering. Swansea University. Bay Campus)
Saliba, M. (IEK-5 Photovoltaik. Forschungszentrum Jülich GmbH)
Schubert, Ulrich S. (Laboratory of Organic and Macromolecular Chemistry (IOMC). Friedrich Schiller University Jena)
Snaith, H. J. (Clarendon Laboratory. University of Oxford)
Stranks, Samuel D (Cavendish Laboratory. University of Cambridge)
Tress, W. (Laboratory of Photomolecular Science. Institute of Chemical Sciences and Engineering. École Polytechnique Fédérale de Lausanne)
Troshin, P. A. (IPCP RAS)
Turkovic, Vida (SDU NanoSYD. Mads Clausen Institute. University of Southern Denmark)
Veenstra, S. (TNO - Solliance. High Tech Campus)
Visoly-Fisher, I. (Ilse Katz Institute for Nanoscale Science and Technology. Ben-Gurion University of the Negev)
Walsh, A. (Department of Materials Science and Engineering. Yonsei University)
Watson, Trystan M. (SPECIFIC. College of Engineering. Swansea University. Bay Campus)
Xie, Haibing (Institut Català de Nanociència i Nanotecnologia)
Yıldırım, R. (Department of Chemical Engineering. Boğaziçi University. Bebek)
Zakeeruddin, Shaik Mohammed (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Zhu, Kai (National Renewable Energy Laboratory)
Lira-Cantu, Monica (Institut Català de Nanociència i Nanotecnologia)

Data: 2020
Resum: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
Ajuts: European Commission 785219
European Commission 764047
European Commission 763989
European Commission 756962
Ministerio de Economía y Competitividad ENE2016-79282-C5-2-R
Ministerio de Economía y Competitividad CTQ2016-81911-REDT
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-329
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Degradation mechanism ; Experimental procedure ; Induced degradation ; Ion redistribution ; Long term stability ; Organic photovoltaics ; Qualification standards ; Stability assessment
Publicat a: Nature energy, Vol. 5 (2020) , p. 35-49, ISSN 2058-7546

DOI: 10.1038/s41560-019-0529-5


15 p, 2.1 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-11-18, darrera modificació el 2024-07-10



   Favorit i Compartir