Web of Science: 55 cites, Scopus: 58 cites, Google Scholar: cites,
Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity
Garcia Cortadella, Ramon (Institut Català de Nanociència i Nanotecnologia)
Schwesig, G. (Ludwig-Maximilians-Universität München. Bernstein Center for Computational Neuroscience Munich)
Jeschke, C. (Multi Channel Systems GmbH (Germany))
Illa, Xavi (Institut de Microelectrònica de Barcelona)
Gray, Anna L. (University of Manchester. National Graphene Institute. Nanomedicine Lab (UK))
Savage, Sinead (University of Manchester. National Graphene Institute. Nanomedicine Lab (UK))
Stamatidou, E. (University of Manchester. National Graphene Institute. Nanomedicine Lab (UK))
Schiessl, I. (University of Manchester. Division of Neuroscience and Experimental Psychology (UK))
Masvidal Codina, Eduard (Institut de Microelectrònica de Barcelona)
Kostarelos, Kostas (Institut Català de Nanociència i Nanotecnologia)
Guimerà Brunet, Anton (Institut de Microelectrònica de Barcelona)
Sirota, Anton (Ludwig-Maximilians-Universität München. Bernstein Center for Computational Neuroscience Munich)
Garrido, Jose (Institut Català de Nanociència i Nanotecnologia)

Data: 2021
Resum: Graphene active sensors have demonstrated promising capabilities for the detection of electrophysiological signals in the brain. Their functional properties, together with their flexibility as well as their expected stability and biocompatibility have raised them as a promising building block for large-scale sensing neural interfaces. However, in order to provide reliable tools for neuroscience and biomedical engineering applications, the maturity of this technology must be thoroughly studied. Here, we evaluate the performance of 64-channel graphene sensor arrays in terms of homogeneity, sensitivity and stability using a wireless, quasi-commercial headstage and demonstrate the biocompatibility of epicortical graphene chronic implants. Furthermore, to illustrate the potential of the technology to detect cortical signals from infra-slow to high-gamma frequency bands, we perform proof-of-concept long-term wireless recording in a freely behaving rodent. Our work demonstrates the maturity of the graphene-based technology, which represents a promising candidate for chronic, wide frequency band neural sensing interfaces.
Ajuts: European Commission 732032
European Commission 696656
European Commission 785219
Ministerio de Economía y Competitividad SEV-2017-0706
Ministerio de Ciencia e Innovación FIS2017-85787-R
Nota: Aquest article té una correcció a 10.1038/s41467-021-23078-z.
Nota: Altres ajuts: CERCA Programme/Generalitat de Catalunya
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Neuroscience ; Biomedical engineering
Publicat a: Nature communications, Vol. 12 (January 2021) , art. 211, ISSN 2041-1723

Correcció de l'article: https://ddd.uab.cat/record/255537
DOI: 10.1038/s41467-020-20546-w
PMID: 33431878


17 p, 7.1 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2021-01-25, darrera modificació el 2024-07-01



   Favorit i Compartir