Web of Science: 107 citas, Scopus: 115 citas, Google Scholar: citas,
Single-layer graphene modulates neuronal communication and augments membrane ion currents
Pampaloni, Niccolò Paolo (International School for Advanced Studies (Trieste, Itàlia))
Lottner, Martin (Technische Universität München. Walter Schottky Institut. Physik-Department)
Giugliano, Michele (Universiteit Antwerp. Department of Biomedical Sciences)
Matruglio, Alessia (CERIC-ERIC)
D'Amico, Francesco (Elettra Sincrotrone Trieste)
Prato, Maurizio (CIC biomaGUNE)
Garrido, Jose (Institut Català de Nanociència i Nanotecnologia)
Ballerini, Laura (International School for Advanced Studies (Trieste, Itàlia))
Scaini, Denis (International School for Advanced Studies (Trieste, Itàlia))

Fecha: 2018
Resumen: The use of graphene-based materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that single-layer graphene increases neuronal firing by altering membrane-associated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene-ion interactions that are maximized when single-layer graphene is deposited on electrically insulating substrates are crucial to these effects.
Ayudas: European Commission 720270
European Commission 696656
Ministerio de Economía y Competitividad CTQ2016-76721-R
Derechos: Tots els drets reservats.
Lengua: Anglès
Documento: Article ; recerca ; Versió acceptada per publicar
Materia: Associated functions ; Biosensing interfaces ; Cellular changes ; Central nervous systems ; Insulating substrates ; Ion interactions ; Neuronal firings ; Theoretical approach ; Action Potentials ; Animals ; Biocompatible Materials ; Cell Communication ; Cells, Cultured ; Graphite ; Nanostructures ; Nerve Net ; Neurons ; Potassium ; Rats
Publicado en: Nature Nanotechnology, Vol. 13 Núm. 8 (August 2018) , p. 755-764, ISSN 1748-3395

DOI: 10.1038/s41565-018-0163-6


Postprint
66 p, 14.0 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2021-04-26, última modificación el 2023-02-08



   Favorit i Compartir