Google Scholar: cites
Protecting a diamond quantum memory by charge state control
Pfender, Matthias (Stuttgart Research Center of Photonic Engineering)
Aslam, Nabeel (Stuttgart Research Center of Photonic Engineering)
Simon, Patrick (Technische Universität München. Walter Schottky Institut)
Antonov, Denis (Stuttgart Research Center of Photonic Engineering)
Thiering, Gergő (Budapest University of Technology and Economics. Department of Atomic Physics)
Burk, Sina (Stuttgart Research Center of Photonic Engineering)
De Oliveira, Felipe Fávaro (Stuttgart Research Center of Photonic Engineering)
Denisenko, Andrej (Stuttgart Research Center of Photonic Engineering)
Fedder, Helmut (Swabian Instruments GmbH)
Meijer, Jan (Universität Leipzig. Institute for Experimental Physics II)
Garrido, Jose (Institut Català de Nanociència i Nanotecnologia)
Gali, Adam (Budapest University of Technology and Economics. Department of Atomic Physics)
Teraji, Tokuyuki (National Institute for Materials Science (Tsukuba, Japó))
Isoya, Junichi (University of Tsukuba. Research Center for Knowledge Communities)
Doherty, Marcus William (Australian National University. Laser Physics Centre)
Alkauskas, Audrius (Center for Physical Sciences and Technology (Vilnius, Lituània))
Gallo, Alejandro (Max Planck Institute for Solid State Research)
Grüneis, Andreas (Max Planck Institute for Solid State Research)
Neumann, Philipp (Stuttgart Research Center of Photonic Engineering)
Wrachtrup, Jörg (Stuttgart Research Center of Photonic Engineering)

Data: 2017
Resum: In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.
Ajuts: European Commission 611143
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Diamond ; Nitrogen-vacancy center ; Charge state control ; Spin qubit ; Quantum memory
Publicat a: Nano letters, Vol. 17, issue 10 (Oct. 2017) , p. 5931-5937, ISSN 1530-6992

DOI: 10.1021/acs.nanolett.7b01796


Postprint
10 p, 1.0 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2021-04-26, darrera modificació el 2022-09-06



   Favorit i Compartir