Google Scholar: cites
A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures : Theory and Experiment
Beardo Ricol, Albert (Universitat Autònoma de Barcelona. Departament de Física)
Knobloch, Joshua L. (University of Colorado and NIST)
Sendra, Lluc (Universitat Autònoma de Barcelona. Departament de Física)
Bafaluy Bafaluy, Javier (Universitat Autònoma de Barcelona. Departament de Física)
Frazer, Travis D. (University of Colorado and NIST)
Chao, Weilun (Lawrence Berkeley National Laboratory)
Hernandez-Charpak, Jorge N. (University of Colorado and NIST)
Kapteyn, Henry C. (University of Colorado and NIST)
Abad Mayor, Begoña (University of Colorado and NIST)
Murnane, Margaret M. (University of Colorado and NIST)
Àlvarez Calafell, Francesc Xavier (Universitat Autònoma de Barcelona. Departament de Física)
Camacho Castro, Juan (Universitat Autònoma de Barcelona. Departament de Física)

Data: 2021
Resum: Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier's law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.
Ajuts: Agencia Estatal de Investigación RTI2018-097876−B-C22
Nota: Altres ajuts: acords transformatius de la UAB
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Phonon hydrodynamics ; Non-fourier heat transport ; Silicon ; High-order harmonic generation ; Pump−probe spectroscopy
Publicat a: ACS nano, Vol. 15, Issue 8 (August 2021) , p. 13019-13030, ISSN 1936-086X

DOI: 10.1021/acsnano.1c01946
PMID: 34328719

12 p, 5.5 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2022-01-11, darrera modificació el 2023-04-01

   Favorit i Compartir