Statistics for the analysis of molecular dynamics simulations : providing P values for agonist-dependent GPCR activation
Bruzzese, Agustín (Centro de Investigación Biomédica en Red de Salud Mental)
Dalton, James A. R. (Centro de Investigación Biomédica en Red de Salud Mental)
Giraldo, Jesús (Universitat Autònoma de Barcelona. Departament de Pediatria, Obstetrícia i Ginecologia i Medicina Preventiva i Salut Pública)
Data: |
2020 |
Resum: |
Molecular dynamics (MD) is the common computational technique for assessing efficacy of GPCR-bound ligands. Agonist efficacy measures the capability of the ligand-bound receptor of reaching the active state in comparison with the free receptor. In this respect, agonists, neutral antagonists and inverse agonists can be considered. A collection of MD simulations of both the ligand-bound and the free receptor are needed to provide reliable conclusions. Variability in the trajectories needs quantification and proper statistical tools for meaningful and non-subjective conclusions. Multiple-factor (time, ligand, lipid) ANOVA with repeated measurements on the time factor is proposed as a suitable statistical method for the analysis of agonist-dependent GPCR activation MD simulations. Inclusion of time factor in the ANOVA model is consistent with the time-dependent nature of MD. Ligand and lipid factors measure agonist and lipid influence on receptor activation. Previously reported MD simulations of adenosine A2a receptor (A2aR) are reanalyzed with this statistical method. TM6-TM3 and TM7-TM3 distances are selected as dependent variables in the ANOVA model. The ligand factor includes the presence or absence of adenosine whereas the lipid factor considers DOPC or DOPG lipids. Statistical analysis of MD simulations shows the efficacy of adenosine and the effect of the membrane lipid composition. Subsequent application of the statistical methodology to NECA A2aR agonist, with resulting P values in consistency with its pharmacological profile, suggests that the method is useful for ligand comparison and potentially for dynamic structure-based virtual screening. |
Ajuts: |
Agencia Estatal de Investigación SAF2017-87199-R European Commission 848068
|
Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Biophysics ;
Computational biology and bioinformatics ;
Drug discovery ;
Structural biology |
Publicat a: |
Scientific reports, Vol. 10 (november 2020) , ISSN 2045-2322 |
DOI: 10.1038/s41598-020-77072-4
PMID: 33203907
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2022-02-07, darrera modificació el 2023-10-30