On analogues of Mazur-Tate type conjectures in the Rankin-Selberg setting
Cauchi, Antonio 
(Universitat Politècnica de Catalunya. Departament de Matemàtiques)
Lei, Antonio 
(Université Laval. Département de Mathématiques et de Statistique)
| Date: |
2022 |
| Abstract: |
We study the Fitting ideals over the finite layers of the cyclotomic Zp-extension of Q of Selmer groups attached to the Rankin-Selberg convolution of two modular forms f and g. Inspired by the theta elements for modular forms defined by Mazur and Tate in [32], we define new theta elements for Rankin-Selberg convolutions of f and g using Loeffler-Zerbes' geometric p-adic L-functions attached to f and g. Under certain technical hypotheses, we generalize a recent work of Kim-Kurihara on elliptic curves to prove a result very close to the weak main conjecture of Mazur and Tate for Rankin-Selberg convolutions. Special emphasis is given to the case where f corresponds to an elliptic curve E and g to a two-dimensional odd irreducible Artin representation ρ with splitting field F. As an application, we give an upper bound of the dimension of the ρ-isotypic component of the Mordell-Weil group of E over the finite layers of the cyclotomic Zp-extension of F in terms of the order of vanishing of our theta elements. |
| Abstract: |
We study the Fitting ideals over the finite layers of the cyclotomic Zp-extension of Q of Selmer groups attached to the Rankin-Selberg convolution of two modular forms f and g. Inspired by the theta elements for modular forms defined by Mazur and Tate in [32], we define new theta elements for Rankin-Selberg convolutions of f and g using Loeffler-Zerbes' geometric p-adic L-functions attached to f and g. Under certain technical hypotheses, we generalize a recent work of Kim-Kurihara on elliptic curves to prove a result very close to the weak main conjecture of Mazur andTate for Rankin-Selberg convolutions. Special emphasis is given to the case where f corresponds to an elliptic curve E and g to a two-dimensional odd irreducible Artin representation ρ with splitting field F. As an application, we give an upper bound of the dimension of the ρ-isotypic component of the Mordell-Weil group of E over the finite layers of the cyclotomic Zp-extension of F in terms of the order of vanishing of our theta elements. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Iwasawa theory ;
Rankin-selberg convolution ;
Elliptic modular forms ;
Mazur-tate conjectures |
| Published in: |
Publicacions matemàtiques, Vol. 66 Núm. 2 (2022) , p. 571-630 (Articles) , ISSN 2014-4350 |
Adreça original: https://raco.cat/index.php/PublicacionsMatematiques/article/view/402238
DOI: 10.5565/PUBLMAT6622204
The record appears in these collections:
Articles >
Published articles >
Publicacions matemàtiquesArticles >
Research articles
Record created 2022-07-27, last modified 2024-11-17