|
|
|||||||||||||||
|
Buscar | Enviar | Ayuda | Servicio de Bibliotecas | Sobre el DDD | Català English Español | |||||||||
| Página principal > Artículos > Artículos publicados > Bifurcation analysis of the Microscopic Markov Chain Approach to contact-based epidemic spreading in networks |
| Fecha: | 2023 |
| Resumen: | The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host population present a second-order phase transition. This transition occurs as a function of the infectivity parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from the perspective of dynamical systems, for a discrete-time compartmental epidemic model known as Microscopic Markov Chain Approach, whose applicability for forecasting future scenarios of epidemic spreading has been proved very useful during the COVID-19 pandemic. We show that there is an endemic state which is stable and a global attractor and that its existence is a consequence of a transcritical bifurcation. This mathematical analysis grounds the results of the model in practical applications. |
| Ayudas: | Agència de Gestió d'Ajuts Universitaris i de Recerca 2020PANDE00098 Agencia Estatal de Investigación PID2021-128005NB-C21 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-896 Agència de Gestió d'Ajuts Universitaris i de Recerca PDAD14/20/00001 Agencia Estatal de Investigación MTM2017-86795-C3-2-P |
| Nota: | Altres ajuts: Universitat Rovira i Virgili, Spain (2019PFR-URV-B2-41); ICREA Academia |
| Derechos: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Lengua: | Anglès |
| Documento: | Article ; recerca ; Versió acceptada per publicar |
| Publicado en: | Chaos, solitons and fractals, Vol. 166 (January 2023) , art. 112921, ISSN 0960-0779 |
Post-print 15 p, 425.7 KB |