Web of Science: 8 cites, Scopus: 8 cites, Google Scholar: cites
Formation of Complex Organic Molecules on Interstellar CO Ices? Insights from Computational Chemistry Simulations
Ferrero, Stefano (Universitat Autònoma de Barcelona. Departament de Química)
Ceccarelli, Cecilia (Université Grenoble Alpes)
Ugliengo, Piero (Università degli Studi di Torino. Dipartimento di Chimica and Nanostructured Interfaces and Surfaces)
Sodupe Roure, Mariona (Universitat Autònoma de Barcelona. Departament de Química)
Rimola Gibert, Albert (Universitat Autònoma de Barcelona. Departament de Química)

Data: 2023
Resum: The carbon (3P) atom is a reactive species that, according to laboratory experiments and theoretical calculations, condensates with interstellar ice components. This fact is of uttermost importance for the chemistry in the interstellar medium (ISM) because the condensation reaction is barrierless, and the subsequent species formed are still reactive given their open-shell character. Carbon condensation on CO-rich ices forms the C=C=O (3Σ−) species, which can be easily hydrogenated twice to form ketene (H2CCO). Ketene is very reactive in terrestrial conditions, usually found as an intermediate that is difficult to isolate in chemical synthesis laboratories. These characteristics suggest that ketene can be a good candidate to form interstellar complex organic molecules via a two-step process, i. e. , its activation followed by a radical-radical coupling. In this work, reactions between ketene and atomic H and the OH and NH2 radicals on a CO-rich ice model have been explored by means of quantum chemical calculations complemented by kinetic calculations to evaluate if they are favorable in the ISM. Results indicate that the addition of H to ketene (helped by tunneling) to form the acetyl radical (CH3CO) is the most preferred path as the reactions with OH and NH2 possess activation energies (…9 kJ mol−1 ) hard to surmount in the ISM conditions unless external processes provide energy to the system. Thus, acetaldehyde (CH3CHO) and, probably, ethanol (CH3CH2OH) formation via further hydrogenations, are the possible unique operating synthetic routes. Moreover, from the computed, relatively large binding energies of OH and NH2 on CO ice, slow diffusion is expected, hampering possible radical-radical couplings with CH3CO. The astrophysical implications of these findings are discussed considering the incoming James Webb Space Telescope observations.
Ajuts: European Commission 811312
European Commission 741002
European Commission 865657
Agencia Estatal de Investigación PID2021-126427NB-I00
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: The Astrophysical journal, Vol. 951, Issue 2 (July 2023) , art. 150, ISSN 1538-4357

DOI: 10.3847/1538-4357/acd192

7 p, 485.0 KB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2023-09-07, darrera modificació el 2024-05-16

   Favorit i Compartir