Web of Science: 5 citations, Scopus: 6 citations, Google Scholar: citations,
Sharp bounds for composition with quasiconformal mappings in Sobolev spaces
Oliva, Marcos (Universidad Autónoma de Madrid. Departamento de Matemáticas)
Prats, Martí (Universidad Autónoma de Madrid. Departamento de Matemáticas)

Date: 2017
Abstract: Let φ be a quasiconformal mapping, and let Tφ be the composition operator which maps f to f ˝ φ. Since φ may not be bi-Lipschitz, the composition operator need not map Sobolev spaces to themselves. The study begins with the behavior of Tφ on Lp and W1,p for 1 ă p ă 8. This cases are well understood but alternative proofs of some known results are provided. Using interpolation techniques it is seen that compactly supported Bessel potential functions in Hs,p are sent to Hs,q whenever 0 ă s ă 1 for appropriate values of q. The techniques used lead to sharp results and they can be applied to Besov spaces as well.
Grants: European Commission 307179
Ministerio de Economía y Competitividad SEV-2015-0554
Ministerio de Economía y Competitividad MTM2011-28198
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-75
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Sobolev spaces ; Fractional smoothness ; Quasiconformal mappings ; Composition operator
Published in: Journal of mathematical analysis and applications, Vol. 451, Issue 2 (July 2017) , p. 1026-1044, ISSN 1096-0813

DOI: 10.1016/j.jmaa.2017.02.016


Postprint
19 p, 574.3 KB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2024-01-23, last modified 2024-05-18



   Favorit i Compartir