Intelligent Control of Wastewater Treatment Plants Based on Model-Free Deep Reinforcement Learning
Aponte-Rengifo, Oscar (Universidad de Salamanca. Departamento de Informática y Automática)
Francisco, Mario (Universidad de Salamanca. Departamento de Informática y Automática)
Vilanova i Arbós, Ramon (Universitat Autònoma de Barcelona. Departament de Telecomunicació i Enginyeria de Sistemes)
Vega, Pastora (Universidad de Salamanca. Departamento de Informática y Automática)
Revollar, Silvana (Universidad de Salamanca. Departamento de Informática y Automática)
Data: |
2023 |
Resum: |
In this work, deep reinforcement learning methodology takes advantage of transfer learning methodology to achieve a reasonable trade-off between environmental impact and operating costs in the activated sludge process of Wastewater treatment plants (WWTPs). WWTPs include complex nonlinear biological processes, high uncertainty, and climatic disturbances, among others. The dynamics of complex real processes are difficult to accurately approximate by mathematical models due to the complexity of the process itself. Consequently, model-based control can fail in practical application due to the mismatch between the mathematical model and the real process. Control based on the model-free reinforcement deep learning (RL) methodology emerges as an advantageous method to arrive at suboptimal solutions without the need for mathematical models of the real process. However, convergence of the RL method to a reasonable control for complex processes is data-intensive and time-consuming. For this reason, the RL method can use the transfer learning approach to cope with this inefficient and slow data-driven learning. In fact, the transfer learning method takes advantage of what has been learned so far so that the learning process to solve a new objective does not require so much data and time. The results demonstrate that cumulatively achieving conflicting objectives can efficiently be used to approach the control of complex real processes without relying on mathematical models. |
Ajuts: |
Agencia Estatal de Investigación PID2019-105434RB-C31 Agencia Estatal de Investigación TED2021-129201B-I00
|
Nota: |
Altres ajuts: Samuel Solórzano Foundation Project FS/11-2021 |
Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Intelligent control ;
Model-free deep reinforcement learning ;
Reusing policy ;
Waste water treatment plant |
Publicat a: |
Processes, Vol. 11, Issue 8 (August 2023) , art. 2269, ISSN 2227-9717 |
DOI: 10.3390/pr11082269
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2024-01-31, darrera modificació el 2024-05-06