Google Scholar: cites
Ligand-Capped Ru Nanoparticles as Efficient Electrocatalyst for the Hydrogen Evolution Reaction
Creus, Jordi (Universitat Autònoma de Barcelona. Departament de Química)
Drouet, Samuel (Université de Toulouse)
Suriñach, Santiago (Suriñach Cornet) (Universitat Autònoma de Barcelona. Departament de Física)
Lecante, Pierre (Centre d'Elaboration de Matériaux et d'Etudes Structurales)
Collière, Vincent (Université de Toulouse)
Poteau, Romuald (Université de Toulouse)
Philippot, Karine (Université de Toulouse)
García-Antón, Jordi (Universitat Autònoma de Barcelona. Departament de Química)
Sala Román, Xavier (Universitat Autònoma de Barcelona. Departament de Química)

Data: 2018
Resum: Multielectron reductions such as the hydrogen evolution reaction (HER) play an important role in the development of nowadays energy economy. Herein, the application of the organometallic approach as synthetic method allows obtaining very small, ligand-capped but also highly active ruthenium nanoparticles (RuNPs) for the HER in both acidic and basic media. When deposited onto glassy carbon, the catalytic activity of this nanomaterial in 1 M H2SO4 solution is highly dependent on the oxidation state of the NPs surface, with metallic Ru sites being clearly more active than RuO2 ones. In sharp contrast, in 1 M NaOH as electrolyte, the original Ru/RuO2 mixture is maintained even under reductive conditions. Estimation of surface active sites and electrochemically active surface area (ECSA) allowed benchmarking this catalytic system, confirming its leading performance among HER electrocatalysts reported at both acidic and basic pH. Thus, in 1 M NaOH condition, it displays lower overpotentials (η0 ≈ 0 mV, η10 = 25 mV) than those of commercial Pt/C and Ruthenium black (Rub), and also fairly outperforms them in short- and long-term stability tests. In 1 M H2SO4 solution, it clearly outdoes commercial Rub and is competitive or even superior to commercial Pt/C, working at very low overpotentials (η0 ≈ 0 mV, η10 = 20 mV) with a Tafel slope of 29 mV·dec-1, achieving TOFs as high as 17 s-1 at η = 100 mV and reaching a current density of |j| = 10 mA·cm-2 for at least 12 h without any sign of deactivation.
Ajuts: Ministerio de Economía y Competitividad CTQ2015-64261-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2013/CTP-0016
Nota: Altres ajuts: UAB and "Euroregió Pirineus Mediterrànea" PhD grants ; Serra Húnter Program
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Ruthenium ; Nanoparticles ; Water Splitting ; Electrocatalysis ; Hydrogen Evolution Reaction ; Energy
Publicat a: ACS Catalysis, Vol. 8, Issue 12 (December 2018) , p. 11094-11102

DOI: 10.1021/acscatal.8b03053


Postprint
12 p, 1.8 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2024-03-01, darrera modificació el 2024-05-04



   Favorit i Compartir