Reversible tissue sticker inspired by chemistry in plant-pathogen relationship
Lee, Jeehee 
(Korea Advanced Institute of Science and Technology. Department of Chemistry)
Park, Eunsook 
(Korea Advanced Institute of Science and Technology. Department of Chemistry)
Lee, Kyueui 
(Kyungpook National University. Department of Chemistry)
Shin, Mikyung 
(Sungkyunkwan University. Department of Intelligent Precision Healthcare Convergence)
Lee, Soohyeon (Korea Advanced Institute of Science and Technology. Department of Chemistry)
Moreno Villaécija, Miguel Ángel 
(Institut Català de Nanociència i Nanotecnologia)
Lee, Haeshin
(Korea Advanced Institute of Science and Technology. Department of Chemistry)
| Data: |
2023 |
| Resum: |
Plants release phenolic molecules to protect against invading pathogens. In plant-microorganism relationships, phenolics bind to surface oligosaccharides, inactivating microorganism activities. Inspired by phenol-saccharide interactions in plant defense systems, we designed an adhesive sealant. By screening 16 different saccharides, the O-acetyl group, rich in glucomannan (GM), exhibited rapid, robust binding with the galloyl moiety of a model phenolic molecule, tannic acid (TA). Furthermore, the interaction showed both pH and temperature (upper critical solution temperature) sensitivities. Utilizing O-acetyl-galloyl interactions, materials of all dimensions from beads (0D) to strings (1D), films (2D), and objects (3D) could be prepared, as a suitable platform for printing techniques. GMTA films are elastic, adhesive, water-resistant, and effectively sealed perforations, as demonstrated by (1) a lung incision followed by an air inflation model and (2) a thoracic diaphragm model. Statement of significance: In nature, phenolic molecules are 'nearly always' physically bound with polysaccharides, indicating that the phenolics widen the functions of polysaccharides. An example includes that phenolic-polysaccharide interactions are key defense mechanisms against microbial infection in plants whereas polysaccharide alone functions poorly. Despite the ubiquitous biochemistry of polysaccharide-phenolic interactions, efforts on understanding binding chemistry focusing on phenol/polysaccharide interactions is little. This study is important because we found for the first time that O-acetyl group is the moiety in polysaccharides to which phenolic cis-diol and/or cis-triol is spontaneously bound. The phenol-polysaccharide interaction is non-covalent yet robust, kinetically fast, and reversible. Inspired by the interaction chemistry, a simple mixture of phenolic molecules and O-acetyl group containing polysaccharides such as glucomannan opens a promising fabrication strategy toward functional polysaccharide-based material. |
| Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Matèria: |
Polysaccharide ;
Phenol ;
O-acetyl ;
Bio-inspired ;
Hydrogen bonding |
| Publicat a: |
Acta Biomaterialia, Vol. 155 (January 2023) , p. 247-257, ISSN 1878-7568 |
DOI: 10.1016/j.actbio.2022.09.075
El registre apareix a les col·leccions:
Documents de recerca >
Documents dels grups de recerca de la UAB >
Centres i grups de recerca (producció científica) >
Ciències >
Institut Català de Nanociència i Nanotecnologia (ICN2)Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2024-03-21, darrera modificació el 2025-02-06