Google Scholar: cites
Thermoelectric Performance of Surface-Engineered Cu1.5-xTe-Cu2Se Nanocomposites
Xing, Congcong (Institut de Recerca en Energia de Catalunya)
Zhang, Yu (Pennsylvania State University. Department of Materials Science and Engineering)
Xiao, Ke (Universitat de Barcelona)
Han, Xu (Institut Català de Nanociència i Nanotecnologia)
Liu, Yu (Hefei University of Technology)
Nan, Bingfei (Universitat de Barcelona)
Garcia Ramon, Maria (Institute of Science and Technology Austria)
Lim, Khak Ho (Institute of Zhejiang University-Quzhou)
Li, Junshan (Chengdu University)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Poudel, Bed (Pennsylvania State University. Department of Materials Science and Engineering)
Nozariasbmarz, Amin (Pennsylvania State University. Department of Materials Science and Engineering)
Li, Wenjie (Pennsylvania State University. Department of Materials Science and Engineering)
Ibáñez, Maria (Institute of Science and Technology Austria)
Cabot i Codina, Andreu (Institut de Recerca en Energia de Catalunya)

Data: 2023
Resum: CuS and CuSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, CuTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of CuTe-CuSe nanocomposites by consolidating surface-engineered CuTe nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in CuTe-CuSe nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of CuSe generated around CuTe nanoparticles effectively inhibits CuTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1. 3 at 560 K.
Ajuts: Agencia Estatal de Investigación ENE2016-77798-C4-3-R
Agencia Estatal de Investigación PID2020-116093RB-C43
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1246
Ministerio de Ciencia e Innovación CEX2021-001214-S
Drets: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Matèria: Copper telluride ; Nanoparticles ; Surface engineering ; Phase transition ; Thermoelectric ; Grain size
Publicat a: ACS nano, Vol. 17, Issue 9 (September 2023) , p. 8442-8452, ISSN 1936-086X

DOI: 10.1021/acsnano.3c00495


Preprint
25 p, 2.5 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2024-10-17, darrera modificació el 2025-12-05



   Favorit i Compartir