|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > Casting a BAIT for offline and online source-free domain adaptation |
| Data: | 2023 |
| Resum: | We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting. |
| Ajuts: | Agencia Estatal de Investigación PID2019-104174GB-I00 Agencia Estatal de Investigación TED2021-132513B-I00 Agencia Estatal de Investigación PID2021-128178OB-I00 Ministerio de Ciencia e Innovación RYC2019-027020-I |
| Nota: | Altres ajuts: CERCA Programme/Generalitat de Catalunya |
| Drets: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Llengua: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Publicat a: | Computer Vision and Image Understanding, Vol. 234 (September 2023) , art. 103747, ISSN 1090-235X |
Postprint 9 p, 568.4 KB |