Google Scholar: cites
Engineering Chromosome Bridges Through CRISPR/Cas9 to Decipher the Impact of Intercentromeric Distance on Resolution Dynamics
Anglada Pons, Teresa (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Rodriguez Muñoz, Marina (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Pulido-Artola, Núria (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Genescà, Anna (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)

Data: 2025
Resum: Resolution of chromosome bridges during mitosis is a critical yet incompletely understood process with implications for genomic stability and cancer development. In this study, we investigated the impact of the bridging chromatin length on the timing and mechanism of chromosome bridge resolution. Using CRISPR/Cas9 technology, we engineered chromosome bridges with precisely defined intercentromeric distances in human RPE-1 cells. Our study revealed a decline in the frequency of chromosome bridges as cells progressed from early anaphase to late telophase, indicating resolution during mitosis. Moreover, the longer the bridging chromatin length, the higher the frequency of chromosome bridges observed at the mitotic exit, demonstrating that the size of the bridge influences its resolution during mitosis. Additionally, the separation between the bridge kinetochores needed for bridge breakage was strongly dependent on the megabase length of the bridging chromatin, with longer chromosome bridges requiring greater separation for their resolution. Given that chromosome bridge resolution occurs in a concerted manner with spindle elongation and is influenced by the length of the bridging chromatin, we posit that the traction forces generated by microtubules attaching to dicentric chromosomes play a significant role in resolving chromosome bridges during mitosis. Our study underscores the intricate interplay between chromosome bridge geometry and mechanical forces in mitotic chromosome bridge resolution. Our model offers a valuable framework for future investigations into the molecular mechanisms underlying chromosome bridge resolution, with potential implications for cancer biology and genomic stability maintenance.
Ajuts: Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-122
Nota: Altres ajuts: acords transformatius de la UAB
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Bridging chromatin length ; Chromosome bridge ; CRISPR/Cas9 ; Mitosis
Publicat a: FASEB Journal, Vol. 39, Issue 9 (May 2025) , art. e70599, ISSN 1530-6860

DOI: 10.1096/fj.202402258RR
PMID: 40331862


12 p, 4.7 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-05-20, darrera modificació el 2025-10-15



   Favorit i Compartir