Sustainable Green Synthesis of Fe3O4 Nanocatalysts for Efficient Oxygen Evolution Reaction
Carmona, Erico 
(Universidad Arturo Prat (Xile))
Sukeri, Anandhakumar (SRM Institute of Science and Technology. Department of Chemistry (Índia))
Nelson, Ronald 
(Universidad Católica del Norte. Departamento de Química (Xile))
Rojo, Cynthia (Universidad Arturo Prat (Xile))
Vizcarra, Arnoldo (Universidad de Tarapacá)
Villacorta, Aliro 
(Universidad Arturo Prat (Xile))
Carevic, Felipe
(Universidad Arturo Prat (Xile))
Marcos Dauder, Ricardo
(Universitat Autònoma de Barcelona. Departament de Genètica i de Microbiologia)
Arriaza, Bernardo (Universidad de Tarapacá)
Lara, Nelson (Universidad de Tarapacá)
Martínez, Tamara (Universidad Católica del Norte. Departamento de Química (Xile))
Hernández-Saravia, Lucas Patricio
(Universidad Arturo Prat (Xile))
| Date: |
2025 |
| Abstract: |
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. The Fe3O4NPs exhibit a well-defined spherical morphology with a larger Brunauer-Emmett-Teller surface area and a significant electrochemically active surface area. The green synthesis using orange peel extracts leads to an excellent electrocatalytic activity of the apparent spherical Fe3O4NPs (diameter of 9. 62 ± 0. 07 nm), which is explored for OER in an alkaline medium (1. 0 M KOH) using linear-sweep and cyclic voltammetry techniques. These nanoparticles achieved a benchmark current density of 10 mA cm-2 at a low overpotential of 0. 3 V versus RHE, along with notable durability and stability. The outstanding OER electrocatalytic activity is attributed to their unique morphology, which offers large surface area and an ideal porous structure that enhances the adsorption and activation of reactive species. Furthermore, structural defects within the nanoparticles facilitate efficient electron transfer and migration of these species, further accelerating the OER process. |
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Green synthesis ;
Fe3O4 nanoparticles ;
Electrocatalysis ;
Oxygen evolution reaction ;
Sustainability |
| Published in: |
Nanomaterials, Vol. 15, Issue 17 (August 2025) , art. 1317, ISSN 2079-4991 |
DOI: 10.3390/nano15171317
PMID: 40937996
The record appears in these collections:
Articles >
Research articlesArticles >
Published articles
Record created 2025-09-24, last modified 2025-10-17