Web of Science: 0 cites, Scopus: 0 cites, Google Scholar: cites
Dyadic Ru-based nanomaterials for visible light-driven photocatalytic hydrogen evolution
Martí Balaguer, Gerard (Universitat Autònoma de Barcelona. Departament de Química)
Alique, Marc (Universitat Autònoma de Barcelona. Departament de Química)
López, Isidoro (Université Bourgogne Europe)
Francàs Forcada, Laia (Universitat Autònoma de Barcelona. Departament de Química)
Bofill Arasa, Roger (Universitat Autònoma de Barcelona. Departament de Química)
Schott, Oliver (Université de Montréal. Département de Chimie)
Hanan, Garry S. (Université de Montréal. Département de Chimie)
Lozano-Roche, Álvaro (Universitat Autònoma de Barcelona. Departament de Química)
Romero Fernández, Nuria (Centre National de la Recherche Scientifique (França))
Philippot, Karine (Centre National de la Recherche Scientifique (França))
Llobet Dalmases, Antoni (Barcelona Institute of Science and Technolgy)
Natali, Mirco (Università degli Studi di Ferrara)
García-Antón, Jordi (Universitat Autònoma de Barcelona. Departament de Química)
Sala Román, Xavier (Universitat Autònoma de Barcelona. Departament de Química)

Data: 2026
Resum: Visible light-driven water splitting is an appealing strategy to store renewable energy in the chemical bonds of molecular hydrogen. In this regard, the development of photocatalytic architectures where charge transfer and recombination can be controlled represents a key challenge. The surface functionalization of Ru/RuO nanoparticles (NPs) with the [Ru(2,2'-bpy)(qpy)](PF) photosensitizer (PS), yielding PS-NPs "dyadic" hybrid nanomaterials, represents a promising strategy. Four HER photocatalysts with different PS:NPs ratios are synthesized and thoroughly characterized by analytical and spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) reveals the covalent binding of the PS to the NPs surface. Analysis of the photocatalytic performance in aqueous triethanolamine (TEOA) shows that the activation of the nanocatalyst (RuO reduction) and the hydrogen evolution rate improves when the PS loading increases. Under visible-light irradiation, the nanomaterials with higher PS loading show sustained production of hydrogen for at least 80 h. The morphological and compositional evolution of the hybrid nanomaterials under photocatalytic conditions is studied and correlated with hydrogen production rates over time, pointing to a sequential leaching of PS from the nanomaterials surface. Additionally, photophysical experiments allow attaining an insight into the photochemical mechanism, which involves oxidative quenching with a fast electron injection, but also fast back electron transfer.
Ajuts: Ministerio de Ciencia, Innovación y Universidades FPU19/04322
Agencia Estatal de Investigación RYC2018-025394-I
Agencia Estatal de Investigación PID2021-128197NA-I00
Agencia Estatal de Investigación PID2019-104171RB-I00
Agencia Estatal de Investigación PID2023-146787OB-I00
Agència de Gestió d'Ajuts Universitaris i de Recerca CLIMA2023-00036
Agencia Estatal de Investigación CEX2024-001469-S
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01583
Agencia Estatal de Investigación PID2022-140143OB-I00
Nota: Altres ajuts: acords transformatius de la UAB
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Ruthenium nanoparticles ; Organometallic approach ; Hydrogen evolution reaction ; Photocatalysis ; Dyads ; Hybrid nanomaterials
Publicat a: Applied surface science, Vol. 716 (January 2026) , art. 164621, ISSN 0169-4332

DOI: 10.1016/j.apsusc.2025.164621


10 p, 271.0 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-10-07, darrera modificació el 2025-10-20



   Favorit i Compartir