Google Scholar: cites
AI and Machine Learning for Precision Medicine in Acute Pancreatitis : A Narrative Review
López Gordo, Sandra (Universitat Autònoma de Barcelona. Departament de Ciències Morfològiques)
Ramirez-Maldonado, Elena (Universitat Rovira i Virgili)
Fernandez-Planas, Maria Teresa (Hospital de Mataró. Consorci Sanitari del Maresme)
Bombuy, Ernest (Hospital de Mataró. Consorci Sanitari del Maresme)
Memba, Robert (Universitat Rovira i Virgili)
Jorba, Rosa (Universitat Rovira i Virgili)

Data: 2025
Resum: Acute pancreatitis (AP) presents a significant clinical challenge due to its wide range of severity, from mild cases to life-threatening complications such as severe acute pancreatitis (SAP), necrosis, and multi-organ failure. Traditional scoring systems, such as Ranson and BISAP, offer foundational tools for risk stratification but often lack early precision. This review aims to explore the transformative role of artificial intelligence (AI) and machine learning (ML) in AP management, focusing on their applications in diagnosis, severity prediction, complication management, and treatment optimization. A comprehensive analysis of recent studies was conducted, highlighting ML models such as XGBoost, neural networks, and multimodal approaches. These models integrate clinical, laboratory, and imaging data, including radiomics features, and are useful in diagnostic and prognostic accuracy in AP. Special attention was given to models addressing SAP, complications like acute kidney injury and acute respiratory distress syndrome, mortality, and recurrence. AI-based models achieved higher AUC values than traditional models in predicting acute pancreatitis outcomes. XGBoost reached an AUC of 0. 93 for early SAP prediction, higher than BISAP (AUC 0. 74) and APACHE II (AUC 0. 81). PrismSAP, integrating multimodal data, achieved the highest AUC of 0. 916. AI models also demonstrated superior accuracy in mortality prediction (AUC 0. 975) and ARDS detection (AUC 0. 891) AI and ML represent a transformative advance in AP management, facilitating personalized treatment, early risk stratification, and allowing resource utilization to be optimized. By addressing challenges such as model generalizability, ethical considerations, and clinical adoption, AI has the potential to significantly improve patient outcomes and redefine AP care standards globally.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Artificial intelligence ; Machine learning ; Acute pancreatitis ; Severity ; Personalized medicine
Publicat a: Medicina, Vol. 61 (march 2025) , ISSN 1648-9144

DOI: 10.3390/medicina61040629
PMID: 40282920


15 p, 688.5 KB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-10-14, darrera modificació el 2025-10-22



   Favorit i Compartir