Google Scholar: citations
Boosting Polysulfide Conversion on Fe-Doped Nickel Diselenide Toward Robust Lithium-Sulfur Batteries
Li, Junshan (Institut de Recerca en Energia de Catalunya)
Yu, Jing (Institut Català de Nanociència i Nanotecnologia)
Zhang, Yong (Chengdu University)
Li, Canhuang (Institut de Recerca en Energia de Catalunya)
Ma, Yi (Chengdu University)
Ge, Huan (Chengdu University)
Jian, Ning (Chengdu University)
Li, Luming (Chengdu University)
Zhang, Chao Yue (University of California)
Zhou, Jin Yuan (Lanzhou University)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Cabot i Codina, Andreu (Institut de Recerca en Energia de Catalunya)

Date: 2025
Abstract: Sulfur offers a high-energy-density, low-cost, and sustainable alternative to traditional battery cathodes, but its practical use is limited by sluggish and uneven reaction and polysulfide dissolution, necessitating electrocatalytic additives to enhance conversion efficiency. Generating unpaired spin electrons has proven effective in enhancing performance in Co-based electrocatalysts. These unpaired electrons increase polysulfide conversion by enhancing adsorption and weakening S─S bonds, facilitating their cleavage during sulfur reduction reactions. This work extends the strategy to Fe-Ni-based catalysts. The synthesis of NiSe and Fe-doped NiSe particles is reported and investigate the impact of Fe doping on the electronic structure, catalytic activity, and performance of NiSe is introduced as a coating on the cathode side of the Li-S battery (LSB) separator. Experimental analyses and first-principles calculations reveal that Fe-rich cores and surface doping in NiSe enhance the density of states at the Fermi level and introduce unpaired electrons, boosting LiPS adsorption and catalytic conversion. These synergistic effects significantly improve the catalytic performance, cycling stability, and overall performance of LSB cells. Specifically, LSB cells based on Fe-doped NiSe-based separators achieve specific capacities of 1483 mAh g⁻¹ at 0. 1C and 1085 mAh g⁻¹ at 1C, along with remarkable cycling stability, retaining 84. 4% capacity after 800 cycles. High sulfur-loading tests further validate the multifunctional membrane's effectiveness, showing significant capacity retention and reduced polysulfide loss.
Grants: Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01581
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00457
Agencia Estatal de Investigación PID2023-149158OB-C43
Agencia Estatal de Investigación CEX2021-001214-S
European Commission 014206
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: Advanced functional materials, Vol. 35. Issue 33 (August 2025) , art. 2501485, ISSN 1616-3028

DOI: 10.1002/adfm.202501485


9 p, 5.2 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2025-11-11, last modified 2025-12-06



   Favorit i Compartir