Google Scholar: citas
Boosting Polysulfide Conversion on Fe-Doped Nickel Diselenide Toward Robust Lithium-Sulfur Batteries
Li, Junshan (Institut de Recerca en Energia de Catalunya)
Yu, Jing (Institut Català de Nanociència i Nanotecnologia)
Zhang, Yong (Chengdu University)
Li, Canhuang (Institut de Recerca en Energia de Catalunya)
Ma, Yi (Chengdu University)
Ge, Huan (Chengdu University)
Jian, Ning (Chengdu University)
Li, Luming (Chengdu University)
Zhang, Chao Yue (University of California)
Zhou, Jin Yuan (Lanzhou University)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Cabot, Andreu (Institut de Recerca en Energia de Catalunya)

Fecha: 2025
Resumen: Sulfur offers a high-energy-density, low-cost, and sustainable alternative to traditional battery cathodes, but its practical use is limited by sluggish and uneven reaction and polysulfide dissolution, necessitating electrocatalytic additives to enhance conversion efficiency. Generating unpaired spin electrons has proven effective in enhancing performance in Co-based electrocatalysts. These unpaired electrons increase polysulfide conversion by enhancing adsorption and weakening S─S bonds, facilitating their cleavage during sulfur reduction reactions. This work extends the strategy to Fe-Ni-based catalysts. The synthesis of NiSe and Fe-doped NiSe particles is reported and investigate the impact of Fe doping on the electronic structure, catalytic activity, and performance of NiSe is introduced as a coating on the cathode side of the Li-S battery (LSB) separator. Experimental analyses and first-principles calculations reveal that Fe-rich cores and surface doping in NiSe enhance the density of states at the Fermi level and introduce unpaired electrons, boosting LiPS adsorption and catalytic conversion. These synergistic effects significantly improve the catalytic performance, cycling stability, and overall performance of LSB cells. Specifically, LSB cells based on Fe-doped NiSe-based separators achieve specific capacities of 1483 mAh g⁻¹ at 0. 1C and 1085 mAh g⁻¹ at 1C, along with remarkable cycling stability, retaining 84. 4% capacity after 800 cycles. High sulfur-loading tests further validate the multifunctional membrane's effectiveness, showing significant capacity retention and reduced polysulfide loss.
Ayudas: Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01581
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00457
Agencia Estatal de Investigación PID2023-149158OB-C43
Agencia Estatal de Investigación CEX2021-001214-S
European Commission 014206
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Publicado en: Advanced functional materials, Vol. 35. Issue 33 (August 2025) , art. 2501485, ISSN 1616-3028

DOI: 10.1002/adfm.202501485


9 p, 5.2 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2025-11-11, última modificación el 2025-12-01



   Favorit i Compartir