Data: |
2006 |
Descripció: |
15 p. |
Resum: |
We present a new domain of preferences under which the majority relation is always quasi-transitive and thus Condorcet winners always exist. We model situations where a set of individuals must choose one individual in the group. Agents are connected through some relationship that can be interpreted as expressing neighborhood, and which is formalized by a graph. Our restriction on preferences is as follows: each agent can freely rank his immediate neighbors, but then he is indifferent between each neighbor and all other agents that this neighbor "leads to". Hence, agents can be highly perceptive regarding their neighbors, while being insensitive to the differences between these and other agents which are further removed from them. We show quasi-transitivity of the majority relation when the graph expressing the neighborhood relation is a tree. We also discuss a further restriction allowing to extend the result for more general graphs. Finally, we compare the proposed restriction with others in the literature, to conclude that it is independent of any previously discussed domain restriction. |
Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
Llengua: |
Anglès |
Col·lecció: |
Departament d'Economia i d'Història Econòmica. Unitat de Fonaments de l'Anàlisi Econòmica / Institut d'Anàlisi Econòmica (CSIC). Working papers |
Col·lecció: |
Working papers ; 512.02 |
Document: |
Working paper |
Matèria: |
Elecció social ;
Models matemàtics |