Generalized factor models : a bayesian approach
Tekatli, Necati
Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica
Institut d'Anàlisi Econòmica

Date: 2008
Description: 34 p.
Abstract: There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Series: Departament d'Economia i d'Història Econòmica. Unitat de Fonaments de l'Anàlisi Econòmica / Institut d'Anàlisi Econòmica (CSIC). Working papers
Series: Working papers ; 730.08
Document: Working paper
Subject: Decisió estadística bayesiana, Teoria de la



34 p, 259.8 KB

The record appears in these collections:
Research literature > Working papers > Fundamentals Unit of the Economic Analysis. Working papers

 Record created 2009-07-15, last modified 2024-05-26



   Favorit i Compartir