Realtime Kernel based Tracking
Chateau, Thierry (CNRS/Blaise-Pascal University)
Lapresté, J. T. (CNRS/Blaise-Pascal University)

Data: 2009
Resum: We present a solution for realtime tracking of a planar pattern. Tracking is seen as the estimation of a parametric function between observations and motion and we propose an extension of the learning based approach presented simultaneously by Cootes and al. and by Jurie and Dhome. We show that the hyperplane classic algorithm is a specific case of a more generic linearly-weighted sum of fixed non-linear basis functions model. The weights associated to the basis functions (kernel functions) of the model are estimated from a training set of perturbations and associated observations generared in a synthetic way. The resulting tracker is then composed by several iterations on trackers learned with coarse to fine magnitude of perturbations. We compare the performance of the method with the linear algorithm in terms of accuracy and convergence frequency. Moreover, we illustrate the behaviour of the method for several real toy video sequences including different patterns, motions and illumination conditions, and for several real video sequences sampling from rear car tracking databases.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Plans de seguiment en temps real ; Funcions de regressió basat en Kernel ; Planos de seguimiento en tiempo real ; Funciones de regresión basado en kernel ; Realtime planar tracking ; Kernel based regression functions ; Rear-car tracking
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, V. 8 n. 1 (2009) p. 27-43, ISSN 1577-5097

Adreça alternativa:
Adreça original:
Adreça original:
DOI: 10.5565/rev/elcvia.224

17 p, 14.4 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA
Articles > Articles de recerca

 Registre creat el 2010-01-18, darrera modificació el 2018-02-08

   Favorit i Compartir