Per citar aquest document:
Nonlinear rescaling and proximal-like methods in convex optimization
Polyak, Roman
Teboulle, Marc

Data: 1997
Resum: The nonlinear rescaling principle (NRP) consists of transforming the objective function and/or the constraints of a given constrained optimization problem into another problem which is equivalent to the original one in the sense that their optimal set of solutions coincides. A nonlinear transformation parameterized by a positive scalar parameter and based on a smooth scaling function is used to transform the constraints. The methods based on NRP consist of sequential unconstrained minimization of the classical Lagrangian for the equivalent problem, followed by an explicit formula updating the Lagrange multipliers. We first show that the NRP leads naturally to proximal methods with an entropy-like kernel, which is defined by the conjugate of the scaling function, and establish that the two methods are dually equivalent for convex constrained minimization problems. We then study the convergence properties of the nonlinear rescaling algorithm and the corresponding entropy-like proximal methods for convex constrained optimization problems. Special cases of the nonlinear rescaling algorithm are presented. In particular a new class of exponential penalty-modified barrier functions methods is introduced.
Drets: Tots els drets reservats
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Convex optimization ; Nonlinear rescaling ; Modified barrier functions ; Augmented Lagrangians ; Proximal methods
Publicat a: Mathematical Programming, vol. 76 n. 2 (1997) p. 265-284, ISSN 0025-5610

20 p, 952.0 KB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2006-03-13, darrera modificació el 2017-09-29

   Favorit i Compartir